Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 40(6): 1093-103, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22381334

RESUMO

The absorption, distribution, metabolism, and excretion (ADME) and the pharmacokinetic characteristics of BMS-562086 [pexacerfont; 8-(6-methoxy-2-methyl-3-pyridinyl)-2,7-dimethyl-N-[(1R)-1-methylpropyl]pyrazolo(1,5-a)-1,3,5-triazin-4-amine (DPC-A69448)] were investigated in vitro and in animals to support its clinical development. BMS-562086 was orally bioavailable in rats, dogs, and chimpanzees, with an absolute oral bioavailability of 40.1, 58.8, and 58.5%, respectively. BMS-562086 was extensively metabolized in hepatocytes from all species and completely metabolized in rats. The primary biotransformation pathways found for BMS-562086 in both liver microsomal and hepatocyte preparations and in rats were similar. These included O-demethylation, hydroxylation at the N-alkyl side chain and N-dealkylation. Multiple cytochromes P450 including CYP3A4/5 were involved in the metabolic clearance of BMS-562086. Both renal and biliary excretion played a significant role in elimination of the metabolites of BMS-562086. The involvement of other metabolic enzymes in addition to CYP3A4/5 in elimination of BMS-562086 suggests a reduced potential for drug-drug interaction through modulation of CYP3A4/5. Chimpanzees proved to be a good animal model in predicting BMS-562086 human clearance. Virtual clinical trials performed with a population-based ADME simulator suggested that a minimal dose of 100 mg daily would provide sufficient drug exposure to achieve plasma concentrations above the projected human efficacious plasma concentration of BMS-562086 (> 500 nM). In summary, BMS-562086 exhibited favorable ADME and pharmacokinetic properties for further development.


Assuntos
Pirazóis/administração & dosagem , Pirazóis/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Triazinas/administração & dosagem , Triazinas/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Estudos Cross-Over , Cães , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pan troglodytes , Ligação Proteica/fisiologia , Pirazóis/farmacocinética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Triazinas/farmacocinética
2.
Xenobiotica ; 41(4): 312-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21143006

RESUMO

We determined the metabolism of [2-(14)C]p-hydroxyphenyl acetic acid (p-HPA) in rat (male, Sprague-Dawley), monkey (male, Cynomolgus), and human (male, Caucasian) hepatocytes, and in bile-duct cannulated (BDC) rats (male, Sprague-Dawley). Unchanged p-HPA ranged from 87.0 to 92.6% of the total radioactivity (TRA) in the extracts of rat, monkey, and human hepatocytes. Metabolites M1 (a glucuronide conjugate of p-HPA) and M2 (a glycine conjugate of p-HPA) were detected, accounting for 1-4% of TRA. After an oral dose of [2-(14)C]p-HPA to BDC rats, p-HPA-related components was predominantly excreted in urine, accounting for 83% of the dose. Bile excretion was limited, accounting for only 1.5% of the dose. Unchanged p-HPA was the predominant radioactivity in plasma (84.6% of the TRA in 1-h pooled plasma) and urine (69.6% of the dose). Metabolites M1, M2, and M3 (a glucuronide of p-HPA) were all detected in plasma, urine, and bile as minor components. In summary, p-HPA was not metabolized extensively in rat, monkey, and human hepatocytes. In rats, absorption and elimination of p-HPA were nearly complete with urinary excretion of the unchanged p-HPA as the predominant route of elimination after oral dosing. No oxidative metabolites were detected, suggesting a minimal role for P450 enzymes in its overall metabolic clearance. Therefore, p-HPA has a low potential for drug-drug interactions mediated by the concomitant inhibitors and inducers of P450 enzymes.


Assuntos
Antioxidantes/farmacocinética , Hepatócitos/metabolismo , Fenilacetatos/farmacocinética , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Biotransformação , Cateterismo , Haplorrinos , Humanos , Masculino , Fenilacetatos/administração & dosagem , Fenilacetatos/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Drug Metab Dispos ; 38(4): 655-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20053818

RESUMO

The disposition of stavudine, a potent and orally active nucleoside reverse transcriptase inhibitor, was investigated in six healthy human subjects. Before dosing humans with [1'-(14)C]stavudine, a tissue distribution study was performed in Long-Evans rats. Results from this study showed no accumulation of radioactivity in any of the tissues studied, indicating that the position of the (14)C-label on the molecule was appropriate for the human study. After a single 80-mg (100 microCi) oral dose of [1'-(14)C]stavudine, approximately 95% of the radioactive dose was excreted in urine with an elimination half-life of 2.35 h. Fecal excretion was limited, accounting for only 3% of the dose. Unchanged stavudine was the major drug-related component in plasma (61% of area under the plasma concentration-time curve from time zero extrapolated to infinite time of the total plasma radioactivity) and urine (67% of dose). The remaining radioactivity was associated with minor metabolites, including mono- and bis-oxidized stavudine, glucuronide conjugates of stavudine and its oxidized metabolite, and an N-acetylcysteine (NAC) conjugate of the ribose (M4) after glycosidic cleavage. Formation of metabolite M4 was shown in human liver microsomes incubated with 2',3'-didehydrodideoxyribose, the sugar base of stavudine, in the presence of NAC. In addition, after similar microsomal incubations fortified with GSH, two GSH conjugates, 3'-GS-deoxyribose and 1'-keto-2',3'-dideoxy-3'-GS-ribose, were observed. This suggests that 2',3'-didehydrodideoxyribose underwent cytochrome P450-mediated oxidation leading to an epoxide intermediate, 2',3'-ribose epoxide, followed by GSH addition. In conclusion, absorption and elimination of stavudine were rapid and complete after oral dosing, with urinary excretion of unchanged drug as the predominant route of elimination in humans.


Assuntos
Fármacos Anti-HIV/farmacocinética , Estavudina/farmacocinética , Administração Oral , Animais , Fármacos Anti-HIV/administração & dosagem , Área Sob a Curva , Biotransformação , Cromatografia Líquida de Alta Pressão , Fezes/química , Humanos , Hidrólise , Técnicas In Vitro , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Ratos , Ratos Long-Evans , Ribose/metabolismo , Estavudina/administração & dosagem , Distribuição Tecidual
4.
Front Pharmacol ; 10: 749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379564

RESUMO

Antibody-drug conjugates (ADCs) are composed of an antibody linked to cytotoxic anticancer payloads. ADCs recognize tumor-specific cell surface antigens and are internalized into lysosomes where proteolytic enzymes release the cytotoxic payloads. Efflux transporters on plasma membrane that play a significant role on multi-drug resistance in chemotherapy can be internalized on lysosomal membrane and sequester the cytotoxic payloads. In the present study, ATP binding cassette (ABC) efflux transporters including breast cancer resistance protein (BCRP), P-glycoprotein (P-gp-MDR1), multidrug resistance protein (MRP) 2, MRP3 and MRP4 in lysosomal, and plasma membrane of tumor cells were quantified by targeted quantitative proteomics. The cytotoxicity of brentuximab vedotin and its cytotoxic payload monomethyl auristatin E (MMAE) to the tumor cell lines in the presence and absence of elacridar (P-gp-MDR1 inhibitor) or chloroquine (lysosomotropic agent) were evaluated. MMAE is a substrate for P-gp-MDR1, as the apparent efflux ratio in MDR1 transfected MDCK cell monolayers was 44.5, and elacridar abolished the MMAE efflux. Cell lines that highly express P-gp-MDR1 show higher EC50s toward the cell killing effects of MMAE. Co-incubation with chloroquine or elacridar resulted in left shift of MMAE EC50 by 2.9-16-fold and 4.2-22-fold, respectively. Similarly co-incubation with chloroquine or elacridar or in combination of chloroquine and elacridar increased cytotoxic effects of brentuximab vedotin by 2.8- to 21.4-fold on KM-H2 cells that express a specific tumor antigen CD30 and P-gp-MDR1. These findings demonstrate important roles of P-gp-MDR1 on cytotoxic effects of brentuximab vedotin and its payload MMAE. Collectively, ABC transporter-mediated drug extrusion and/or sequestration needs to be early assessed for selection of optimal payloads and linkers when developing ADCs.

5.
J Pharm Biomed Anal ; 165: 198-206, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30553110

RESUMO

Stable isotope labeled (SIL) compounds have been commonly used as internal standards (IS) to ensure the accuracy and quality of liquid chromatography-mass spectrometry (LC-MS) bioanalytical assays. Recently, the application of SIL drugs and LC-MS assays to microdose absolute bioavailability (BA) studies has gained increasing attention. This approach can provide significant cost and time saving, and higher data quality compared to the accelerator mass spectrometry (AMS)-based method, since it avoids the use of radioactive drug, high-cost AMS instrumentation and complex measurement processes. It also eliminates potential metabolite interference with AMS-based assay. However, one major challenge in the application of this approach is the potential interference between the unlabeled drug, the microdose SIL drug, and the SIL-IS during LC-MS analysis. Here we report a convenient and cost-effective strategy to overcome the interference by monitoring the isotopic ion (instead of the commonly used monoisotopic ion) of the interfered compound in MS analysis. For the BMS-986205 absolute BA case study presented, significant interference was observed from the microdose IV drug [13C7,15N]-BMS-986205 to its SIL-IS, [13C7,15N, D3]-BMS-986205, since the difference of nominal molecular mass between the two compounds is only 3 mu, and there is a Cl atom in the molecules. By applying this strategy (monitoring the 37Cl ion for the analysis of the IS), a 90-fold reduction of interference was achieved, which allowed the use of a synthetically accessible SIL compound and enabled the fast progress of the absolute BA study. This strategy minimizes the number of stable isotope labels used for avoiding interference, which greatly reduces the difficulty in synthesizing the SIL compounds and generates significant time and cost savings. In addition, this strategy can also be used to reduce the MS response of the analyte, therefore, avoiding the detector saturation issue of LC-MS/MS assay for high concentration BMS-986205. A LC-MS/MS assay utilizing this strategy was successfully developed for the simultaneous analysis of BMS-986205 and [13C7, 15N]-BMS-986205 in dog plasma using [13C7,15N, D3]-BMS-986205 as the IS. The assay was successfully applied to a microdose absolute BA study of BMS-986205 in dogs. The assay was also validated in human plasma and used to support a human absolute BA study. The same strategy can also be applied to other compounds, including those not containing Cl or other elements with abundant isotopes, or other applications (e.g. selection of internal standard), and the applications were presented.


Assuntos
Acetamidas/análise , Cromatografia Líquida/métodos , Inibidores Enzimáticos/análise , Quinolinas/análise , Espectrometria de Massas em Tandem/métodos , Acetamidas/administração & dosagem , Acetamidas/farmacocinética , Animais , Disponibilidade Biológica , Cromatografia Líquida/economia , Análise Custo-Benefício , Cães , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Humanos , Marcação por Isótopo , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Espectrometria de Massas em Tandem/economia
6.
Cancer Chemother Pharmacol ; 69(1): 51-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21594721

RESUMO

PURPOSE: To assess the inhibition and induction potential of tanespimycin and its major metabolite, 17-amino-17-demethoxygeldanamycin (17-AG) on cytochrome P450 (CYP) enzymes. METHODS: The inhibitory effect of tanespimycin and 17-AG on various CYP enzymes was determined in human liver microsomes. The inductive effects of tanespimycin and 17-AG on CYP1A2, CYP2B6, and CYP3A4/5 were determined in cultured primary human hepatocytes. RESULTS: Tanespimycin did not inhibit the activities of CYP1A2, 2A6, 2B6, and 2E1 up to a concentration of 60 µM, while it moderately inhibited CYP3A4/5 and 2C19, and weakly inhibited CYP2C8, 2C9, and 2D6. In addition, its inhibition on CYP3A4/5 was time-dependent. 17-AG moderately inhibited the activities of CYP3A4/5 and CYP2C19, but did not inhibit other CYPs up to a concentration of 30 µM. The inhibition of CYP3A4/5 by 17-AG was not time-dependent. Tanespimycin and 17-AG did not significantly induce the activities of CYP1A2, CYP2B6, or CYP3A4/5 in cultured human hepatocytes at concentrations up to 40 and 20 µM for tanespimycin and 17-AG, respectively. CONCLUSIONS: Tanespimycin together with its active metabolite, 17-AG are moderate inhibitors of CYP3A4/5 and CYP2C19, but not inducers of CYPs. Therefore, co-administration of tanespimycin has the potential to increase the exposure of substrates of CYP2C19 and CYP3A4/5.


Assuntos
Benzoquinonas/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Lactamas Macrocíclicas/farmacologia , Benzoquinonas/administração & dosagem , Benzoquinonas/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Técnicas In Vitro , Lactamas Macrocíclicas/administração & dosagem , Lactamas Macrocíclicas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa