Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649930

RESUMO

AIM: Corallococcus species are diverse in the natural environment with 10 new Corallococcus species having been characterized in just the last 5 years. As well as being an abundant myxobacterial genus, they produce several secondary metabolites, including Corallopyronin, Corramycin, Coralmycin, and Corallorazine. We isolated a novel strain Corallococcus spp RDP092CA from soil in South Wales, UK, using Candida albicans as prey bait and characterized its predatory activities against pathogenic bacteria and yeast. METHODS AND RESULTS: The size of the RDP092CA genome was 8.5 Mb with a G + C content of 71.4%. Phylogenetically, RDP092CA is closely related to Corallococcus interemptor, C. coralloides, and C. exiguus. However, genome average nucleotide identity and digital DNA-DNA hybridization values are lower than 95% and 70% when compared to those type strains, implying that it belongs to a novel species. The RDP092CA genome harbours seven types of biosynthetic gene clusters (BGCs) and 152 predicted antimicrobial peptides. In predation assays, RDP092CA showed good predatory activity against Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus but not against Enterococcus faecalis. It also showed good antibiofilm activity against all five bacteria in biofilm assays. Antifungal activity against eight Candida spp. was variable, with particularly good activity against Meyerozyma guillermondii DSM 6381. Antimicrobial peptide RDP092CA_120 exhibited potent antibiofilm activity with >50% inhibition and >60% dispersion of biofilms at concentrations down to 1 µg/ml. CONCLUSIONS: We propose that strain RDP092CA represents a novel species with promising antimicrobial activities, Corallococcus senghenyddensis sp. nov. (=NBRC 116490T =CCOS 2109T), based on morphological, biochemical, and genomic features.


Assuntos
Myxococcales , Filogenia , Myxococcales/genética , Myxococcales/metabolismo , Myxococcales/isolamento & purificação , Composição de Bases , Genoma Bacteriano , Microbiologia do Solo , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Família Multigênica , DNA Bacteriano/genética , RNA Ribossômico 16S/genética
2.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676482

RESUMO

Corallococcus spp. are common soil-dwelling organisms which kill and consume prey microbes through the secretion of antimicrobial substances. Two species of Corallococcus have been described previously (Corallococcus coralloides and Corallococcus exiguus). A polyphasic approach, including biochemical analysis of fatty acid methyl esters, substrate utilization, and sugar assimilation assays, was taken to characterize eight Corallococcus species strains and the two type strains. The genomes of all strains, including that of C. exiguus DSM 14696T (newly reported here), shared an average nucleotide identity below 95% and digital DNA-DNA hybridization scores of less than 70%, indicating that they belong to distinct species. In addition, we characterized the prey range and antibiotic resistance profile of each strain, illustrating the diversity of antimicrobial activity and, thus, the potential for drug discovery within the Corallococcus genus. Each strain gave a distinct profile of properties, which together with their genomic differences supports the proposal of the eight candidate strains as novel species. The eight candidates are as follows: Corallococcus exercitus sp. nov. (AB043AT= DSM 108849T = NBRC 113887T), Corallococcus interemptor sp. nov. (AB047AT= DSM 108843T = NBRC 113888T), Corallococcus aberystwythensis sp. nov. (AB050AT = DSM 108846T = NBRC 114019T), Corallococcus praedator sp. nov. (CA031BT= DSM 108841T = NBRC 113889T), Corallococcus sicarius sp. nov. (CA040BT= DSM 108850T = NBRC 113890T), Corallococcus carmarthensis sp. nov. (CA043DT= DSM 108842T = NBRC 113891T), Corallococcus llansteffanensis sp. nov. (CA051BT= DSM 108844T = NBRC 114100T), and Corallococcus terminator sp. nov. (CA054AT= DSM 108848T = NBRC 113892T).IMPORTANCECorallococcus is a genus of predators with broad prey ranges, whose genomes contain large numbers of gene clusters for secondary metabolite biosynthesis. The physiology and evolutionary heritage of eight Corallococcus species strains were characterized using a range of analyses and assays. Multiple metrics confirmed that each strain belonged to a novel species within the Corallococcus genus. The strains exhibited distinct patterns of drug resistance and predatory activity, which mirrored their possession of diverse sets of biosynthetic genes. The breadth of antimicrobial activities observed within the Corallococcus genus highlights their potential for drug discovery and suggests a previous underestimation of both their taxonomic diversity and biotechnological potential. Taxonomic assignment of environmental isolates to novel species allows us to begin to characterize the diversity and evolution of members of this bacterial genus with potential biotechnological importance, guiding future bioprospecting efforts for novel biologically active metabolites and antimicrobials.


Assuntos
Cadeia Alimentar , Genoma Bacteriano , Myxococcales/classificação , Myxococcales/genética , Myxococcales/metabolismo , Filogenia
3.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194103

RESUMO

Herpetosiphon spp. are ubiquitous, chemoheterotrophic, filamentous gliding bacteria with the ability to prey on other microbes through a "wolf pack" mechanism. The genus currently comprises four known species (H. aurantiacus, H. geysericola, H. giganteus, and H. gulosus), which produce antimicrobial secondary metabolites such as siphonazole. As part of a study isolating myxobacterial wolf pack predators, we serendipitously isolated a novel environmental strain (CA052B) from the edge of a stream at Llansteffan, United Kingdom, which was identified as a member of the Herpetosiphon genus. A lawn culture method was utilized to analyze the predatory activity of CA052B against 10 prey organisms of clinical relevance. CA052B was found to prey on Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus faecalis, Bacillus subtilis, and Candida albicans Purified CA052B outer membrane vesicles also exhibited killing activity against the prey organisms when tested by flow cytometry. 16S rRNA sequencing of CA052B showed 98 to 99% identity with other Herpetosiphon species members. Comparing the genome of CA052B with the publicly available genomes of H. aurantiacus and H. geysericola revealed average nucleotide identities of only 84% and 91%, respectively, whereas the genome-to-genome distance calculation showed sequence identities of 28.2% and 46.6%, respectively. Biochemical characterization also revealed distinctions between CA052B and both H. gulosus and H. giganteus Thus, strain CA052BT (= DSM 107618T = NBRC 113495T) is proposed to be the type strain of a novel species, Herpetosiphon llansteffanense sp. nov. The genome sequence of CA052B also revealed diverse secondary metabolite biosynthetic clusters, encouraging further exploration of its antibiotic production potential.IMPORTANCE Predatory bacteria are able to kill and consume other microbes and are therefore of interest as potential sources of new antimicrobial substances for applications in the clinic. "Wolf pack" predators kill prey by secreting antimicrobial substances into their surroundings, and those substances can kill prey organisms independently of the predatory cells. The genus Herpetosiphon exhibits wolf pack predation, yet its members are poorly described compared to other wolf pack predators, such as the myxobacteria. By providing a thorough characterization of a novel Herpetosiphon species, including its predatory, biochemical, and genomic features, this study increases our understanding of genomic variation within the Herpetosiphon genus and how that variation affects predatory activity. This will facilitate future rational exploitation of genus members (and other wolf pack predators) as sources of novel antimicrobials.


Assuntos
Chloroflexi/fisiologia , Genoma Bacteriano , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rios/microbiologia , Metabolismo Secundário
4.
BMC Genomics ; 18(1): 180, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209138

RESUMO

BACKGROUND: Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an important livestock disease raising public health and economic concerns around the world. In New Zealand, a number of wildlife species are implicated in the spread and persistence of bTB in cattle populations, most notably the brushtail possum (Trichosurus vulpecula). Whole Genome Sequenced (WGS) M. bovis isolates sourced from infected cattle and wildlife across New Zealand were analysed. Bayesian phylogenetic analyses were conducted to estimate the substitution rate of the sampled population and investigate the role of wildlife. In addition, the utility of WGS was examined with a view to these methods being incorporated into routine bTB surveillance. RESULTS: A high rate of exchange was evident between the sampled wildlife and cattle populations but directional estimates of inter-species transmission were sensitive to the sampling strategy employed. A relatively high substitution rate was estimated, this, in combination with a strong spatial signature and a good agreement to previous typing methods, acts to endorse WGS as a typing tool. CONCLUSIONS: In agreement with the current knowledge of bTB in New Zealand, transmission of M. bovis between cattle and wildlife was evident. Without direction, these estimates are less informative but taken in conjunction with the low prevalence of bTB in New Zealand's cattle population it is likely that, currently, wildlife populations are acting as the main bTB reservoir. Wildlife should therefore continue to be targeted if bTB is to be eradicated from New Zealand. WGS will be a considerable aid to bTB eradication by greatly improving the discriminatory power of molecular typing data. The substitution rates estimated here will be an important part of epidemiological investigations using WGS data.


Assuntos
Mycobacterium bovis/genética , Mycobacterium bovis/fisiologia , Tuberculose Bovina/transmissão , Sequenciamento Completo do Genoma , Animais , Teorema de Bayes , Bovinos , Análise por Conglomerados , Nova Zelândia , Filogenia
5.
Database (Oxford) ; 20242024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38958433

RESUMO

Myxobacteria are predatory bacteria with antimicrobial activity, utilizing complex mechanisms to kill their prey and assimilate their macromolecules. Having large genomes encoding hundreds of secondary metabolites, hydrolytic enzymes and antimicrobial peptides, these organisms are widely studied for their antibiotic potential. MyxoPortal is a comprehensive genomic database hosting 262 genomes of myxobacterial strains. Datasets included provide genome annotations with gene locations, functions, amino acids and nucleotide sequences, allowing analysis of evolutionary and taxonomical relationships between strains and genes. Biosynthetic gene clusters are identified by AntiSMASH, and dbAMP-generated antimicrobial peptide sequences are included as a resource for novel antimicrobial discoveries, while curated datasets of CRISPR/Cas genes, regulatory protein sequences, and phage associated genes give useful insights into each strain's biological properties. MyxoPortal is an intuitive open-source database that brings together application-oriented genomic features that can be used in taxonomy, evolution, predation and antimicrobial research. MyxoPortal can be accessed at http://dicsoft1.physics.iisc.ac.in/MyxoPortal/. Database URL:  http://dicsoft1.physics.iisc.ac.in/MyxoPortal/. Graphical Abstract.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Myxococcales , Myxococcales/genética , Genômica/métodos
6.
Hum Vaccin Immunother ; 19(1): 2199656, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37078597

RESUMO

The coronavirus disease (COVID-19) threat is subsiding through extensive vaccination worldwide. However, the pandemic imposed major disruptions in global immunization programs and has aggravated the risks of vaccine-preventable disease (VPD) outbreaks. Particularly, lower-middle-income regions with minimal vaccine coverage and circulating vaccine-derived viral strains, such as polio, suffered additional burden of accumulated zero-dose children, further making them vulnerable to VPDs. However, there is no compilation of routine immunization disruptions and recovery prospects. There is a noticeable change in the routine vaccination coverage across different phases of the pandemic in six distinct global regions. We have summarized the impact of COVID-19 on routine global vaccination programs and also identified the prospects of routine immunization to combat COVID-like outbreaks.


Assuntos
COVID-19 , Vacinas , Criança , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Esquemas de Imunização , Vacinação , Programas de Imunização
7.
Probiotics Antimicrob Proteins ; 15(1): 202-214, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586039

RESUMO

Antimicrobial resistance (AMR) is a global concern, and as soon as new antibiotics are introduced, resistance to those agents emerges. Therefore, there is an increased appetite for alternative antimicrobial agents to traditional antibiotics. Here, we used in silico methods to investigate potential antimicrobial peptides (AMPs) from predatory myxobacteria. Six hundred seventy-two potential AMP sequences were extracted from eight complete myxobacterial genomes. Most putative AMPs were predicted to be active against Klebsiella pneumoniae with least activity being predicted against Staphylococcus aureus. One hundred seventeen AMPs (defined here as 'potent putative AMPs') were predicted to have very good activity against more than two bacterial pathogens, and these were characterized further in silico. All potent putative AMPs were predicted to have anti-inflammatory and antifungal properties, but none was predicted to be active against viruses. Twenty six (22%) of them were predicted to be hemolytic to human erythrocytes, five were predicted to have anticancer properties, and 56 (47%) were predicted to be biofilm active. In vitro assays using four synthesized AMPs showed high MIC values (e.g. So_ce_56_913 250 µg/ml and Coral_AMP411 125 µg/ml against E. coli). However, antibiofilm assays showed a substantial reduction in numbers (e.g. Coral_AMP411 and Myxo_mac104 showed a 69% and 73% reduction, respectively, at the lowest concentration against E. coli) compared to traditional antibiotics. Fourteen putative AMPs had high sequence similarity to proteins which were functionally associated with proteins of known function. The myxobacterial genomes also possessed a variety of biosynthetic gene clusters (BGCs) that can encode antimicrobial secondary metabolites, but their numbers did not correlate with those of the AMPs. We suggest that AMPs from myxobacteria are a promising source of novel antimicrobial agents with a plethora of biological properties.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Myxococcales , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Myxococcales/genética
8.
ACS Omega ; 8(42): 39454-39467, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901543

RESUMO

Macrolides are empirically used to treat bacterial community-acquired pneumonia (CAP). Streptococcus pneumoniae, being the major pathogen responsible for bacterial CAP with high mortality rates, express MefA-MsrD efflux pumps to hinder macrolide susceptibility. Despite its importance, the structural features of the efflux-protein complex and its impact on macrolide susceptibility have not yet been elucidated explicitly. Therefore, in the present study, combining homology, threading, and dynamics approaches, MefA and MsrD proteins in pathogenic S. pneumoniae were modeled. Both membrane (lipid-bilayer) and cytoplasmic (aqueous) environments were considered to simulate the MefA and MsrD proteins in their ideal cellular conditions followed by dynamics analyses. The simulated MefA structure represented a typical major facilitator superfamily protein structure with 13 transmembrane helices. MefA-MsrD interaction via clustering-based docking revealed low-energy conformers with stable intermolecular interactions. The higher clinical MIC value of azithromycin over erythromycin was reflected upon erythromycin eliciting stronger interactions (dissociation constant or ki = ∼52 µM) with the cytoplasmic ATP-binding MsrD than azithromycin (ki = ∼112 µM). The strong (binding energy = -132.1 ± 9.5 kcal/mol) and highly stable (root-mean-square fluctuation < 1.0 Å) physical association between MefA with MsrD was validated and was found to be unaffected by the antibiotic binding. Higher propensity of the macrolides to interact with MsrD than MefA established the importance of the former in macrolide susceptibility. Ours is probably the first report on the structural arrangements in the MefA-MsrD efflux complex and the macrolide susceptibility in S. pneumoniae. This study provides a novel lead for experimental explorations and efflux-pump inhibitor designs.

9.
Gene ; 840: 146770, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905848

RESUMO

Fusobacterium necrophorum causes a range of mild to life threatening infections and there is uncertainty in terms of diagnosis and treatment due to the lack of knowledge on their pathogenic mechanisms. This study characterised genomes of F. necrophorum to compare their virulence factors and investigate potential infection markers. 27 isolates of F. necrophorum from patients with pharyngotonsillitis were subjected to whole genome sequencing and compared with 42 genomes published in the NCBI database. Phylogenomics, pangemome, pan-GWAS and virulome were analysed to study strain variations with reference to virulence factors. Core genome based phylogenomic tree exhibited three clades of which Clade A belonged to F. necrophorum subsp necrophorum, clades B and C were F. necrophorum subsp funduliforme. Pan-GWAS and Pan-Virulome suggest some marker genes associated with clinical sources of isolation that needs further validation. Our study highlights some interesting features of the pathogenesis of F. necrophorum infections. Although the animal isolate genomes had some marker genes, the genomes of human isolates did not exhibit clear correlation to their clinical sources of isolation. This prompts to think of other mechanisms such as co-infections or host factors that can be involved in the pathogenesis.


Assuntos
Infecções por Fusobacterium , Fusobacterium necrophorum , Animais , Infecções por Fusobacterium/microbiologia , Fusobacterium necrophorum/genética , Humanos , Filogenia , Fatores de Virulência/genética
10.
Hum Vaccin Immunother ; 16(9): 2217-2218, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501133

RESUMO

The coronavirus disease (COVID-19) is resulting in millions of infected individuals with several hundred thousands dead throughout the world. Amidst all the havoc, one interesting observation in the present COVID-19 pandemic is the negligible symptoms in the young; particularly children below 10 years of age. We assume the extensive pediatric vaccination with MMR vaccines followed globally could have resulted in innate immune responses, e.g., induction of interferons (IFNs) and activated natural killer (NK) cells, thereby offering natural immunity against SARS-CoV-2 in the young population. Possible cross-protective innate immunity offered by MMR vaccination prompted us to suggest repurposing MMR vaccination for immuno-prophylaxis against COVID-19.


Assuntos
Infecções por Coronavirus/prevenção & controle , Reposicionamento de Medicamentos , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus , COVID-19 , Criança , Infecções por Coronavirus/epidemiologia , Proteção Cruzada , Síndrome da Liberação de Citocina/epidemiologia , Síndrome da Liberação de Citocina/prevenção & controle , Humanos , Interferons/imunologia , Células Matadoras Naturais/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Pneumonia Viral/epidemiologia , Prevalência , SARS-CoV-2 , Vacinação
11.
Mol Omics ; 16(4): 387-397, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32373862

RESUMO

Extracellular membrane vesicles are produced by all domains of life (bacteria, archaea and eukaryotes). Bacterial extracellular vesicles (outer membrane vesicles or OMVs) are produced by outer membrane blebbing, and contain proteins, nucleic acids, virulence factors, lipids and metabolites. OMV functions depend on their internal composition, therefore understanding the proteome of OMVs, and how it varies between organisms, is imperative. Here, we report a comparative proteomic profiling of OMVs from strains of Myxococcus xanthus, a predatory species of Gram-negative myxobacteria whose secretions include secondary metabolites and hydrolytic enzymes, thought to be involved in prey lysis. Ten strains were chosen for study, of which seven had genome sequences available. The remaining three strains were genome sequenced allowing definition of the core and accessory genes and genome-derived proteins found within the pan-genome and pan-proteome respectively. OMVs were isolated from each strain and proteins identified using mass spectrometry. The M. xanthus OMV pan-proteome was found to contain tens of 'core' and hundreds of 'accessory' proteins. Properties of the OMV pan-proteome were compared with those of the pan-proteome deduced from the M. xanthus pan-genome. On average, 80% of 'core' OMV proteins are encoded by genes of the core genome, yet the OMV proteomes of individual strains contain subsets of core genome-derived proteins which only partially overlap. In addition, the distribution of characteristics of vesicle proteins does not correlate with the genome-derived proteome characteristic distribution. We hypothesize that M. xanthus cells package a personalized subset of proteins whose availability is only partially dictated by the presence/absence of encoding genes within the genome.


Assuntos
Proteínas de Bactérias/metabolismo , Vesículas Extracelulares/metabolismo , Myxococcus xanthus/metabolismo , Proteoma , Proteômica , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida , Genoma Bacteriano , Genômica/métodos , Myxococcus xanthus/genética , Proteômica/métodos , Espectrometria de Massas em Tandem
12.
Genome Biol Evol ; 12(12): 2289-2302, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022031

RESUMO

Members of the predatory Myxococcales (myxobacteria) possess large genomes, undergo multicellular development, and produce diverse secondary metabolites, which are being actively prospected for novel drug discovery. To direct such efforts, it is important to understand the relationships between myxobacterial ecology, evolution, taxonomy, and genomic variation. This study investigated the genomes and pan-genomes of organisms within the Myxococcaceae, including the genera Myxococcus and Corallococcus, the most abundant myxobacteria isolated from soils. Previously, ten species of Corallococcus were known, whereas six species of Myxococcus phylogenetically surrounded a third genus (Pyxidicoccus) composed of a single species. Here, we describe draft genome sequences of five novel species within the Myxococcaceae (Myxococcus eversor, Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis, Myxococcus vastator, Pyxidicoccus caerfyrddinensis, and Pyxidicoccus trucidator) and for the Pyxidicoccus type species strain, Pyxidicoccus fallax DSM 14698T. Genomic and physiological comparisons demonstrated clear differences between the five novel species and every other Myxococcus or Pyxidicoccus spp. type strain. Subsequent analyses of type strain genomes showed that both the Corallococcus pan-genome and the combined Myxococcus and Pyxidicoccus (Myxococcus/Pyxidicoccus) pan-genome are large and open, but with clear differences. Genomes of Corallococcus spp. are generally smaller than those of Myxococcus/Pyxidicoccus spp. but have core genomes three times larger. Myxococcus/Pyxidicoccus spp. genomes are more variable in size, with larger and more unique sets of accessory genes than those of Corallococcus species. In both genera, biosynthetic gene clusters are relatively enriched in the shell pan-genomes, implying they grant a greater evolutionary benefit than other shell genes, presumably by conferring selective advantages during predation.


Assuntos
Genoma Bacteriano , Myxococcales/genética , Filogenia , Genômica , RNA Ribossômico 16S/genética
13.
Front Microbiol ; 10: 2650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798566

RESUMO

Despite widespread use in human biology, genome-wide association studies (GWAS) of bacteria are few and have, to date, focused primarily on pathogens. Myxobacteria are predatory microbes with large patchwork genomes, with individual strains secreting unique cocktails of predatory proteins and metabolites. We investigated whether a GWAS strategy could be applied to myxobacteria to identify genes associated with predation. Deduced proteomes from 29 myxobacterial genomes (including eight Myxococcus genomes sequenced for this study), were clustered into orthologous groups, and the presence/absence of orthologues assessed in superior and inferior predators of ten prey organisms. 139 'predation genes' were identified as being associated significantly with predation, including some whose annotation suggested a testable predatory mechanism. Formaldehyde dismutase (fdm) was associated with superior predation of Pseudomonas aeruginosa, and predatory activity of a strain lacking fdm could be increased by the exogenous addition of a formaldehyde detoxifying enzyme, suggesting that production of formaldehyde by P. aeruginosa acts as an anti-predation behaviour. This study establishes the utility of bacterial GWAS to investigate microbial processes beyond pathogenesis, giving plausible and verifiable associations between gene presence/absence and predatory phenotype. We propose that the slow growth rate of myxobacteria, coupled with their predatory mechanism of constitutive secretion, has rendered them relatively resistant to genome streamlining. The resultant genome expansion made possible their observed accumulation of prey-specific predatory genes, without requiring them to be selected for by frequent or recent predation on diverse prey, potentially explaining both the large pan-genome and broad prey range of myxobacteria.

14.
Front Microbiol ; 9: 3187, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619233

RESUMO

Corallococcus is an abundant genus of predatory soil myxobacteria, containing two species, C. coralloides (for which a genome sequence is available) and C. exiguus. To investigate the genomic basis of predation, we genome-sequenced 23 Corallococcus strains. Genomic similarity metrics grouped the sequenced strains into at least nine distinct genomospecies, divided between two major sub-divisions of the genus, encompassing previously described diversity. The Corallococcus pan-genome was found to be open, with strains exhibiting highly individual gene sets. On average, only 30.5% of each strain's gene set belonged to the core pan-genome, while more than 75% of the accessory pan-genome genes were present in less than four of the 24 genomes. The Corallococcus accessory pan-proteome was enriched for the COG functional category "Secondary metabolism," with each genome containing on average 55 biosynthetic gene clusters (BGCs), of which only 20 belonged to the core pan-genome. Predatory activity was assayed against ten prey microbes and found to be mostly incongruent with phylogeny or BGC complement. Thus, predation seems multifactorial, depending partially on BGC complement, but also on the accessory pan-genome - genes most likely acquired horizontally. These observations encourage further exploration of Corallococcus as a source for novel bioactive secondary metabolites and predatory proteins.

15.
Microb Genom ; 4(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29345219

RESUMO

Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator's attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.


Assuntos
Escherichia coli/genética , Myxococcales/genética , Myxococcus xanthus/genética , Comportamento Predatório , Transcriptoma , Adenosina Trifosfatases/genética , Animais , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Bacteriólise , Proteínas de Transporte de Cátions/genética , Técnicas de Cocultura , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Myxococcales/crescimento & desenvolvimento , Myxococcus xanthus/crescimento & desenvolvimento , Pressão Osmótica , RNA Mensageiro , Regulon
16.
Front Microbiol ; 9: 3209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662435

RESUMO

Rhodococcus sp.strain BUPNP1 can utilize the priority environmental pollutant 4-nitrophenol (4-NP) as its sole source of carbon and energy. In this study, genome and transcriptome sequencing were used to gain mechanistic insights into 4-NP degradation. The draft BUPNP1 genome is 5.56 Mbp and encodes 4,963 proteins, which are significantly enriched in hypothetical proteins compared to other Rhodococcus sp. A novel 4-NP catabolic 43 gene cluster "nph" was identified that encodes all the genes required for the conversion of 4-NP into acetyl-CoA and succinate, via 4-nitrocatechol. The cluster also encodes pathways for the catabolism of other diverse aromatic compounds. Comparisons between BUPN1 growing on either 4-NP or glucose resulted in significant changes in the expression of many nph cluster genes, and, during 4-NP growth, a loss of lipid inclusions. Moreover, fatty acid degradation/synthesis genes were found within the nph cluster, suggesting fatty acids may be concurrently catabolised with 4-NP. A holistic model for the action of the nph gene cluster is proposed which incorporates genetic architecture, uptake and metabolism of aromatic compounds, enzymatic activities and transcriptional regulation. The model provides testable hypotheses for further biochemical investigations into the genes of the nph cluster, for potential exploitation in bioremediation.

17.
Front Vet Sci ; 5: 272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425997

RESUMO

The ability to DNA fingerprint Mycobacterium bovis isolates helped to define the role of wildlife in the persistence of bovine tuberculosis in New Zealand. DNA fingerprinting results currently help to guide wildlife control measures and also aid in tracing the source of infections that result from movement of livestock. During the last 5 years we have developed the ability to distinguish New Zealand (NZ) M. bovis isolates by comparing the sequences of whole genome sequenced (WGS) M. bovis samples. WGS provides much higher resolution than our other established typing methods and greatly improves the definition of the regional localization of NZ M. bovis types. Three outbreak investigations are described and results demonstrate how WGS analysis has led to the confirmation of epidemiological sourcing of infection, to better definition of new sources of infection by ruling out other possible sources, and has revealed probable wildlife infection in an area considered to be free of infected wildlife. The routine use of WGS analyses for sourcing new M. bovis infections will be an important component of the strategy employed to eradicate bovine TB from NZ livestock and wildlife.

18.
Front Microbiol ; 8: 1593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878752

RESUMO

Myxobacteria are natural predators of microorganisms and the subjects of concerted efforts to identify novel antimicrobial compounds. Myxobacterial predatory activity seems to require more than just the possession of specific antimicrobial metabolites. Thus a holistic approach to studying predation promises novel insights into antimicrobial action. Here, we report the isolation of 113 myxobacteria from samples of soil taken from a range of habitats in mid Wales. Predatory activity of each isolate was quantified against a panel of clinically important prey organisms, including Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, Enterococcus faecalis, and three species of Staphylococcus. Myxobacterial isolates exhibited a wide range of predation activity profiles against the panel of prey. Efficient predation of all prey by isolates within the collection was observed, with K. pneumoniae and C. albicans proving particularly susceptible to myxobacterial predation. Notably efficient predators tended to be proficient at predating multiple prey organisms, suggesting they possess gene(s) encoding a broad range killing activity. However, predatory activity was not congruent with phylogeny, suggesting prey range is subject to relatively rapid specialization, potentially involving lateral gene transfer. The broad but patchy prey ranges observed for natural myxobacterial isolates also implies multiple (potentially overlapping) genetic determinants are responsible for dictating predatory activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa