Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Cell ; 76(4): 574-589.e7, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31540875

RESUMO

RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética , Transcriptoma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Transporte Proteico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 121(45): e2409747121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39467118

RESUMO

The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Descoberta de Drogas/métodos , Transcriptoma , Humanos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana
3.
Nucleic Acids Res ; 48(19): 11040-11053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045731

RESUMO

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/enzimologia , Enzimas de Restrição-Modificação do DNA/metabolismo , Microbioma Gastrointestinal , Animais , Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , Humanos , Camundongos , Mutação , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061116

RESUMO

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos
5.
Transfusion ; 61(9): 2677-2687, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121205

RESUMO

BACKGROUND: Antibody response duration following severe acute respiratory syndrome coronavirus 2 infection tends to be variable and depends on severity of disease and method of detection. STUDY DESIGN AND METHODS: COVID-19 convalescent plasma from 18 donors was collected longitudinally for a maximum of 63-129 days following resolution of symptoms. All the samples were initially screened by the Ortho total Ig test to confirm positivity and subsequently tested with seven additional direct sandwich or indirect binding assays (Ortho, Roche, Abbott, Broad Institute) directed against a variety of antigen targets (S1, receptor binding domain, and nucleocapsid [NC]), along with two neutralization assays (Broad Institute live virus PRNT and Vitalant Research Institute [VRI] Pseudovirus reporter viral particle neutralization [RVPN]). RESULTS: The direct detection assays (Ortho total Ig total and Roche total Ig) showed increasing levels of antibodies over the time period, in contrast to the indirect IgG assays that showed a decline. Neutralization assays also demonstrated declining responses; the VRI RVPN pseudovirus had a greater rate of decline than the Broad PRNT live virus assay. DISCUSSION: These data show that in addition to variable individual responses and associations with disease severity, the detection assay chosen contributes to the heterogeneous results in antibody stability over time. Depending on the scope of the research, one assay may be preferable over another. For serosurveillance studies, direct, double Ag-sandwich assays appear to be the best choice due to their stability; in particular, algorithms that include both S1- and NC-based assays can help reduce the rate of false-positivity and discriminate between natural infection and vaccine-derived seroreactivity.


Assuntos
Anticorpos Antivirais/imunologia , Doadores de Sangue , COVID-19/epidemiologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/diagnóstico , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Estudos Soroepidemiológicos , Testes Sorológicos/métodos , Testes Sorológicos/normas , Índice de Gravidade de Doença
6.
Proc Natl Acad Sci U S A ; 115(25): 6464-6469, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871950

RESUMO

One key to the success of Mycobacterium tuberculosis as a pathogen is its ability to reside in the hostile environment of the human macrophage. Bacteria adapt to stress through a variety of mechanisms, including the use of small regulatory RNAs (sRNAs), which posttranscriptionally regulate bacterial gene expression. However, very little is currently known about mycobacterial sRNA-mediated riboregulation. To date, mycobacterial sRNA discovery has been performed primarily in log-phase growth, and no direct interaction between any mycobacterial sRNA and its targets has been validated. Here, we performed large-scale sRNA discovery and expression profiling in M. tuberculosis during exposure to five pathogenically relevant stresses. From these data, we identified a subset of sRNAs that are highly induced in multiple stress conditions. We focused on one of these sRNAs, ncRv11846, here renamed mycobacterial regulatory sRNA in iron (MrsI). We characterized the regulon of MrsI and showed in mycobacteria that it regulates one of its targets, bfrA, through a direct binding interaction. MrsI mediates an iron-sparing response that is required for optimal survival of M. tuberculosis under iron-limiting conditions. However, MrsI is induced by multiple host-like stressors, which appear to trigger MrsI as part of an anticipatory response to impending iron deprivation in the macrophage environment.


Assuntos
Mycobacterium tuberculosis/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Análise de Sequência de RNA/métodos
7.
Genes Dev ; 26(13): 1498-507, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751503

RESUMO

Prokaryotic and eukaryotic RNA polymerases can use 2- to ∼4-nt RNAs, "nanoRNAs," to prime transcription initiation in vitro. It has been proposed that nanoRNA-mediated priming of transcription can likewise occur under physiological conditions in vivo and influence transcription start site selection and gene expression. However, no direct evidence of such regulation has been presented. Here we demonstrate in Escherichia coli that nanoRNAs prime transcription in a growth phase-dependent manner, resulting in alterations in transcription start site selection and changes in gene expression. We further define a sequence element that determines, in part, whether a promoter will be targeted by nanoRNA-mediated priming. By establishing that a significant fraction of transcription initiation is primed in living cells, our findings contradict the conventional model that all cellular transcription is initiated using nucleoside triphosphates (NTPs) only. In addition, our findings identify nanoRNAs as a previously undocumented class of regulatory small RNAs that function by being directly incorporated into a target transcript.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Sítio de Iniciação de Transcrição , RNA/biossíntese , Ribonucleases/metabolismo
8.
Mol Cell ; 42(6): 817-25, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21700226

RESUMO

It is often presumed that, in vivo, the initiation of RNA synthesis by DNA-dependent RNA polymerases occurs using NTPs alone. Here, using the model Gram-negative bacterium Pseudomonas aeruginosa, we demonstrate that depletion of the small-RNA-specific exonuclease, Oligoribonuclease, causes the accumulation of oligoribonucleotides 2 to ∼4 nt in length, "nanoRNAs," which serve as primers for transcription initiation at a significant fraction of promoters. Widespread use of nanoRNAs to prime transcription initiation is coupled with global alterations in gene expression. Our results, obtained under conditions in which the concentration of nanoRNAs is artificially elevated, establish that small RNAs can be used to initiate transcription in vivo, challenging the idea that all cellular transcription occurs using only NTPs. Our findings further suggest that nanoRNAs could represent a distinct class of functional small RNAs that can affect gene expression through direct incorporation into a target RNA transcript rather than through a traditional antisense-based mechanism.


Assuntos
Nanoestruturas/química , Pseudomonas aeruginosa/genética , RNA/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , RNA/química , RNA/genética , Sítio de Iniciação de Transcrição
9.
Nat Methods ; 12(4): 323-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730492

RESUMO

Although RNA-seq is a powerful tool, the considerable time and cost associated with library construction has limited its utilization for various applications. RNAtag-Seq, an approach to generate multiple RNA-seq libraries in a single reaction, lowers time and cost per sample, and it produces data on prokaryotic and eukaryotic samples that are comparable to those generated by traditional strand-specific RNA-seq approaches.


Assuntos
Sequência de Bases , Biblioteca Gênica , Análise de Sequência de RNA/métodos , Bactérias/genética , Perfilação da Expressão Gênica/normas , Análise de Sequência de RNA/economia , Análise de Sequência de RNA/normas , Fatores de Tempo
10.
Mol Microbiol ; 101(3): 495-514, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27116338

RESUMO

The global regulator CodY controls the expression of dozens of metabolism and virulence genes in the opportunistic pathogen Staphylococcus aureus in response to the availability of isoleucine, leucine and valine (ILV), and GTP. Using RNA-Seq transcriptional profiling and partial activity variants, we reveal that S. aureus CodY activity grades metabolic and virulence gene expression as a function of ILV availability, mediating metabolic reorganization and controlling virulence factor production in vitro. Strains lacking CodY regulatory activity produce a PIA-dependent biofilm, but development is restricted under conditions that confer partial CodY activity. CodY regulates the expression of thermonuclease (nuc) via the Sae two-component system, revealing cascading virulence regulation and factor production as CodY activity is reduced. Proteins that mediate the host-pathogen interaction and subvert the immune response are shut off at intermediate levels of CodY activity, while genes coding for enzymes and proteins that extract nutrients from tissue, that kill host cells, and that synthesize amino acids are among the last genes to be derepressed. We conclude that S. aureus uses CodY to limit host damage to only the most severe starvation conditions, providing insight into one potential mechanism by which S. aureus transitions from a commensal bacterium to an invasive pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Biofilmes , Interações Hospedeiro-Patógeno/genética , Staphylococcus aureus/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(22): 8227-32, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843172

RESUMO

Global regulators that bind strategic metabolites allow bacteria to adapt rapidly to dynamic environments by coordinating the expression of many genes. We report an approach for determining gene regulation hierarchy using the regulon of the Bacillus subtilis global regulatory protein CodY as proof of principle. In theory, this approach can be used to measure the dynamics of any bacterial transcriptional regulatory network that is affected by interaction with a ligand. In B. subtilis, CodY controls dozens of genes, but the threshold activities of CodY required to regulate each gene are unknown. We hypothesized that targets of CodY are differentially regulated based on varying affinity for the protein's many binding sites. We used RNA sequencing to determine the transcription profiles of B. subtilis strains expressing mutant CodY proteins with different levels of residual activity. In parallel, we quantified intracellular metabolites connected to central metabolism. Strains producing CodY variants F71Y, R61K, and R61H retained varying degrees of partial activity relative to the WT protein, leading to gene-specific, differential alterations in transcript abundance for the 223 identified members of the CodY regulon. Using liquid chromatography coupled to MS, we detected significant increases in branched-chain amino acids and intermediates of arginine, proline, and glutamate metabolism, as well as decreases in pyruvate and glycerate as CodY activity decreased. We conclude that a spectrum of CodY activities leads to programmed regulation of gene expression and an apparent rerouting of carbon and nitrogen metabolism, suggesting that during changes in nutrient availability, CodY prioritizes the expression of specific pathways.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Arginina/biossíntese , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutâmico/biossíntese , Ligantes , Análise de Sequência de RNA , Transaminases/metabolismo , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 42(Web Server issue): W124-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753424

RESUMO

Many small, noncoding RNAs (sRNAs) in bacteria act as posttranscriptional regulators of messenger RNAs. TargetRNA2 is a web server that identifies mRNA targets of sRNA regulatory action in bacteria. As input, TargetRNA2 takes the sequence of an sRNA and the name of a sequenced bacterial replicon. When searching for targets of RNA regulation, TargetRNA2 uses a variety of features, including conservation of the sRNA in other bacteria, the secondary structure of the sRNA, the secondary structure of each candidate mRNA target and the hybridization energy between the sRNA and each candidate mRNA target. TargetRNA2 outputs a ranked list of likely regulatory targets for the input sRNA. When evaluated on a comprehensive set of sRNA-target interactions, TargetRNA2 was found to be both accurate and efficient in identifying targets of sRNA regulatory action. Furthermore, TargetRNA2 has the ability to integrate RNA-seq data, if available. If an sRNA is differentially expressed in two or more RNA-seq experiments, TargetRNA2 considers co-differential gene expression when searching for regulatory targets, significantly improving the accuracy of target identifications. The TargetRNA2 web server is freely available for use at http://cs.wellesley.edu/∼btjaden/TargetRNA2.


Assuntos
RNA Bacteriano/química , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Software , Escherichia coli/genética , Internet , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA
13.
Nucleic Acids Res ; 42(19): 12212-23, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262354

RESUMO

Vibrio parahaemolyticus is the leading worldwide cause of seafood-associated gastroenteritis, yet little is known regarding its intraintestinal gene expression or physiology. To date, in vivo analyses have focused on identification and characterization of virulence factors--e.g. a crucial Type III secretion system (T3SS2)--rather than genome-wide analyses of in vivo biology. Here, we used RNA-Seq to profile V. parahaemolyticus gene expression in infected infant rabbits, which mimic human infection. Comparative transcriptomic analysis of V. parahaemolyticus isolated from rabbit intestines and from several laboratory conditions enabled identification of mRNAs and sRNAs induced during infection and of regulatory factors that likely control them. More than 12% of annotated V. parahaemolyticus genes are differentially expressed in the intestine, including the genes of T3SS2, which are likely induced by bile-mediated activation of the transcription factor VtrB. Our analyses also suggest that V. parahaemolyticus has access to glucose or other preferred carbon sources in vivo, but that iron is inconsistently available. The V. parahaemolyticus transcriptional response to in vivo growth is far more widespread than and largely distinct from that of V. cholerae, likely due to the distinct ways in which these diarrheal pathogens interact with and modulate the environment in the small intestine.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Vibrioses/virologia , Vibrio parahaemolyticus/genética , Animais , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Meio Ambiente , Perfilação da Expressão Gênica , Intestinos/virologia , Pequeno RNA não Traduzido/metabolismo , Coelhos , Regulon , Análise de Sequência de RNA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade , Virulência
14.
Nucleic Acids Res ; 41(19): 9033-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23901011

RESUMO

The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or 'sick'). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Vibrio cholerae/genética , Regiões 5' não Traduzidas , Escherichia coli/genética , Biblioteca Gênica , Genes Essenciais , Loci Gênicos , Cadeias de Markov , RNA não Traduzido/genética , Vibrio cholerae/crescimento & desenvolvimento
15.
J Bacteriol ; 196(11): 1958-67, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633877

RESUMO

Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/veterinária , Campylobacter jejuni/metabolismo , Proteínas de Membrana/metabolismo , Doenças das Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Portador Sadio , Galinhas , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutagênese Insercional , Mutação
16.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712067

RESUMO

The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the post-genomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called Perturbation-Specific Transcriptional Mapping (PerSpecTM), in which large-throughput expression profiling of wildtype or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three new molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small molecule inhibition resemble those resulting from genetic depletion of essential targets by CRISPRi by PerSpecTM, demonstrating proof-of-concept that correlations between expression profiles of small molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.

17.
Cell Host Microbe ; 32(1): 79-92.e7, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38211565

RESUMO

Several bacterial pathogens, including Salmonella enterica, can cause persistent infections in humans by mechanisms that are poorly understood. By comparing genomes of isolates longitudinally collected from 256 prolonged salmonellosis patients, we identified repeated mutations in global regulators, including the barA/sirA two-component regulatory system, across multiple patients and Salmonella serovars. Comparative RNA-seq analysis revealed that distinct mutations in barA/sirA led to diminished expression of Salmonella pathogenicity islands 1 and 4 genes, which are required for Salmonella invasion and enteritis. Moreover, barA/sirA mutants were attenuated in an acute salmonellosis mouse model and induced weaker transcription of host immune responses. In contrast, in a persistent infection mouse model, these mutants exhibited long-term colonization and prolonged shedding. Taken together, these findings suggest that selection of mutations in global virulence regulators facilitates persistent Salmonella infection in humans, by attenuating Salmonella virulence and inducing a weaker host inflammatory response.


Assuntos
Infecções por Salmonella , Transativadores , Animais , Camundongos , Humanos , Transativadores/metabolismo , Infecção Persistente , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Salmonella/microbiologia , Mutação , Regulação Bacteriana da Expressão Gênica
18.
Proc Natl Acad Sci U S A ; 107(16): 7533-8, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368425

RESUMO

Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of sigma(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.


Assuntos
Legionella pneumophila/genética , RNA Bacteriano/genética , Algoritmos , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Modelos Biológicos , Modelos Genéticos , Mutação , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA não Traduzido , Transcrição Gênica , Virulência , Fatores de Virulência/genética
19.
Microbiol Resour Announc ; 12(7): e0033823, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37289095

RESUMO

Lichtheimia ornata is an emerging opportunistic Mucorales pathogen that is associated with fatal infections in immunocompromised individuals. While these environmentally acquired infections have rarely been reported to date, cases were noted in a recent analysis of coronavirus disease 2019 (COVID-19)-associated mucormycosis in India. Here, we report the annotated genome sequence of the environmental isolate CBS 291.66.

20.
mBio ; 14(2): e0352322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786604

RESUMO

The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens. We performed large-scale testing of over 19,000 COVID-19 convalescent plasma (CCP) samples from patients who had been infected with SARS-CoV-2 between March and August 2020 across the United States. The neutralization capacity of the samples was moderately correlated with serological measurements of anti-receptor-binding domain (RBD) IgG levels. The neutralizing antibody levels within these convalescent-phase serum samples were highly variable against the original USA-WA1/2020 strain with almost 10% of individuals who had had PCR-confirmed SARS-CoV-2 infection having no detectable antibodies either by serology or neutralization, and ~1/3 having no or low neutralizing activity. Discordance between neutralization and serology measurements was mainly due to the presence of non-IgG RBD isotypes. Meanwhile, natural infection with the earliest SARS-CoV-2 strain USA-WA1/2020 resulted in weaker neutralization of subsequent B.1.1.7 (alpha) and the B.1.351 (beta) variants, with 88% of samples having no activity against the BA.1 (omicron) variant. IMPORTANCE The ability to directly measure neutralizing antibodies on live SARS-CoV-2 virus in individuals can play an important role in understanding the efficacy of therapeutic interventions or vaccines. In contrast to functional neutralization assays, serological assays only quantify the presence of antibodies as a proxy of immune protection. Here, we have developed a high-throughput, automated neutralization assay for SARS-CoV-2 and measured the neutralizing activity of ~19,000 COVID-19 convalescent plasma (CCP) samples collected across the United States between March and August of 2020. These data were used to support the FDA's interpretation of CCP efficacy in patients with SARS-CoV-2 infection and their issuance of emergency use authorization of CCP in 2020.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Humoral , Soroterapia para COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa