Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 48(6): 3208-3215, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33768577

RESUMO

PURPOSE: Intensity-modulated radiotherapy with simultaneous integrated boost (SIB) presents several attractive advantages to be employed in clinical practice. Its secure application demands a rigorous quality assurance (QA) procedure, ideal for three-dimensional (3D) dose distribution measurements. Thus, a gel dosimetry methodology to evaluate the dose delivery of SIB treatments is presented and compared to conventional gamma evaluation. METHODS: MAGIC-f gel dosimeter with magnetic resonance images for dose reading were used following its standard procedures. Four SIB QA plans created in gel dosimeter phantoms were used. The gel measured and treatment planning system (TPS) calculated doses were compared using 3D gamma analyses (3%/3mm/15% threshold). Two structures were artificially on the TPS dose distribution expected on the phantom by converting the 1.7 and 2.0 Gy isodose levels into structures to represent the treatment. The gel and TPS dose-volume histogram (DVH) were compared based on five dose points: D95%, D90%, D50%, D10%, and D5%. RESULTS: Approvals of 93%, 96%, 98%, and 92% were achieved in the 3D gamma analyses for the plans QA 1, 2, 3, and 4. In the DVH analyses, QA plan 1 measured and expected curves showed a good agreement. QA plan 2 showed deviations in the highest doses for both structures with a maximum deviation (Δmáx ) of 8.0%. QA plans 3 and 4 showed the highest dose variation between the gel and TPS in the smaller doses of the DVH (Δmáx of 7.2% and -8.9%, respectively). For QA plan 4, the curves of the 1.7 Gy structure presented a good agreement, but deviations in the smaller dose region of the DVH occurred for the 2 Gy structure (Δmáx of 7.7%). CONCLUSIONS: A methodology for 3D dose evaluation of complex SIB treatments was proposed. It provided an important overview of the dose distributions. Their results significantly complemented the usual gamma analysis results.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
2.
Phys Med ; 82: 100-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33607523

RESUMO

Gamma function is the standard methodology for comparing dose distributions. It is calculated in dedicated software, and its results verification is not performed. Thus we developed an automatic tool for patient-specific QA results verification through high accuracy machine learning (ML) models based on the radiomics characteristics extraction from gamma images. We used 158 patient-specific QA tests and extracted 105 radiomics features from each gamma image. Three random forest models were developed (ML I, ML II, and ML III). ML I and ML II verified the gamma image approval using criteria of 2%/2mm/15% threshold and 3%/3mm/15% threshold, respectively. ML III verified if the gamma analyzes software recommended protocol was followed to detect if the TPS grid modification step was done. The models were based on the most important features selected using the mean decreased impurity, and their performances were evaluated. ML I included 25 features. Its accuracy was 0.85 using the test set and 0.84 using dataset B. ML II included 10 features, and its accuracy with the test set was 0.98; the same value was achieved using the never seen data (dataset B). The First-order 10th percentile feature was identified as a feature strongly related to the approved classification. ML III selected 23 features with an accuracy of 0.99 for test set and 0.98 for dataset B. An automatic workflow example for gamma analyses QA results verification could be proposed combining the models to detect grid inconsistencies on software evaluation, followed by the test approval classification.


Assuntos
Radioterapia de Intensidade Modulada , Raios gama , Humanos , Aprendizado de Máquina , Software
3.
Phys Med ; 81: 60-68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33440282

RESUMO

PURPOSE: To evaluate the respiratory motion influence on the tridimensional (3D) dose delivery to breast-shaped phantoms using conformal radiotherapy (3D-RT), Field-in Field (FiF), and IMRT planning techniques. METHODS: This study used breast-shaped phantoms filled with MAGIC-f gel dosimeter to simulate the breast, and an oscillation platform to simulate the respiratory motion. The platform allowed motion in the anterior-posterior direction with oscillation amplitudes of 0.34 cm, 0.88 cm, and 1.22 cm. CT images of the static phantom were used for the 3D-RT, FiF, and IMRT treatment planning. Five phantoms were prepared and irradiated for each planning technique evaluated. Phantom 1 was irradiated static, phantoms 2-4 were irradiated moving with the three different motion amplitudes, and phantom 5 was used as a reference. The 3D dose distributions were obtained by relaxometry of magnetic resonance imaging, and the respiratory motion influence in the doses distribution was accessed by gamma evaluations (3%/3mm/15% threshold) comparing the measurements of the phantoms irradiated under movement with the static ones. RESULTS: The mean gamma approvals for three oscillatory amplitudes were 96.44%, 93.23%, and 91.65%; 98.42%, 95.66%, and 94.31%; and 94.49%, 93.51%, and 86.62% respectively for 3D-RT, FiF and IMRT treatments. A gamma results profile per slice along the phantom showed that for FiF and IMRT irradiations, most of the failures occurred in the central region of the phantom. CONCLUSIONS: By increasing the respiratory motion movement, the dose distribution variations for the three planning techniques were more pronounced, being the FiF technique variations the smallest one.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Imagens de Fantasmas , Técnicas de Planejamento , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med ; 63: 105-111, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31221401

RESUMO

PURPOSE: This study aims to optimize the formulation of a methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT) gel dosimeter to achieve acceptable dosimetric characteristics and the lowest final costs. This study also evaluates the reusability of the dosimeter. METHODS: The MAGAT gel dosimeter formulation was optimized. Tetrakis (hydroxymethyl) phosphonium chloride (THPC) concentrations (2, 5, 8, 10, 20, and 65 mM), methacrylic acid (MA) concentrations (2.0, 2.5, 3.0, 3.5, and 4.0% w/w) and gelatin concentrations (4.36, 6.45, 8.36, and 10.45% w/w) were evaluated to provide an adequate dosimetric response. The final dosimeter formulation linearity and dose rate dependence were evaluated. The reutilization methodology of the optimized gel formulation, but containing 2 mM of THPC, which was previously irradiated with a dose of 2 Gy, is also presented. RESULTS: The optimized mass concentration of the dosimeter consists of 88.60% deionized water, 8.36% gelatin, 3.00% of MA and 0.04% THPC (5 mM). It presents a linear response for doses up to 10 Gy with a 1.16 Gy-1 s-1 sensitivity. A maximum sensitivity variation of less than 4.0% was found when varying the dose rate of the radiation beams from 300 to 500 cGy/min. It was possible to reuse the dosimeter, however the sensitivity decreased by 15% from the first to the second irradiation. CONCLUSIONS: A low-cost MAGAT gel dosimeter with optimized formulation that responds to radiation in a dose range of 0 to 10 Gy with small dose-rate dependence is presented. The MAGAT gel can be reused after a 2 Gy irradiation.


Assuntos
Reutilização de Equipamento , Compostos Organofosforados/química , Dosímetros de Radiação , Géis , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa