RESUMO
The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.
Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , RNA/genética , HumanosRESUMO
The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.
Assuntos
Exoma/genética , Deficiência Intelectual/genética , Família , Feminino , Finlândia , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Genótipo , Homozigoto , Humanos , Masculino , Linhagem , Sequenciamento do Exoma/métodosRESUMO
Selective pericyte loss, the histological hallmark of early diabetic retinopathy (DR), enhances the breakdown of the blood-retinal barrier (BRB) in diabetes. However, the role of pericytes on BRB alteration in diabetes and the signaling pathways involved in their effects are currently unknown. To understand the role of diabetes-induced molecular alteration of pericytes, we performed transcriptomic analysis of sorted retinal pericytes from mice model of diabetes. Retinal tissue from non-diabetic and diabetic (duration 3 months) mouse eyes (n = 10 in each group) were used to isolate pericytes through fluorescent activated cell sorting (FACS) using pericyte specific fluorescent antibodies, PDGFRb-APC. For RNA sequencing and qPCR analysis, a cDNA library was generated using template switching oligo and the resulting libraries were sequenced using paired-end Illumina sequencing. Molecular functional pathways were analyzed using differentially expressed genes (DEGs). Differential expression analysis revealed 217 genes significantly upregulated and 495 genes downregulated, in pericytes isolated from diabetic animals. These analyses revealed a core set of differentially expressed genes that could potentially contribute to the pericyte dysfunction in diabetes and highlighted the pattern of functional connectivity between key candidate genes and blood retinal barrier alteration mechanisms. The top up-regulated gene list included: Ext2, B3gat3, Gpc6, Pip5k1c and Pten and down-regulated genes included: Notch3, Xbp1, Gpc4, Atp1a2 and AKT3. Out of these genes, we further validated one of the down regulated genes, Notch 3 and its role in BRB alteration in diabetic retinopathy. We confirmed the downregulation of Notch3 expression in human retinal pericytes exposed to Advanced Glycation End-products (AGEs) treatment mimicking the chronic hyperglycemia effect. Exploration of pericyte-conditioned media demonstrated that loss of NOTCH3 in pericyte led to increased permeability of endothelial cell monolayers. Collectively, we identify a role for NOTCH3 in pericyte dysfunction in diabetes. Further validation of other DEGs to identify cell specific molecular change through whole transcriptomic approach in diabetic retina will provide novel insight into the pathogenesis of DR and novel therapeutic targets.
Assuntos
Barreira Hematorretiniana/metabolismo , Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Retina/metabolismo , Transcriptoma/genética , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia , Transdução de SinaisRESUMO
OBJECTIVE: A small subset of children with congenital hearing loss have abnormal cochleovestibular nerves (i.e., absent, aplastic, or deficient cochlear nerves), with largely unknown etiology. Our objective was to investigate the underlying pathways and identify novel genetic variants responsible for cochleovestibular malformations and nerve abnormalities. It is our hypothesis that several cochleovestibular nerve abnormalities might share common causative pathways. DESIGN: We used a family-based exome sequencing approach to study 12 children with known rare inner ear and/or cochleovestibular nerve malformations. RESULTS: Our results highlight a diverse molecular etiology and suggest that genes important in the developing otic vesicle and cranial neural crest, e.g., MASP1, GREB1L, SIX1, TAF1, are likely to underlie inner ear and/or cochleovestibular nerve malformations. CONCLUSIONS: We show that several cochleovestibular nerve malformations are neurocristopathies, which is consistent with the fact that cochleovestibular nerve development is based on otic placode-derived neurons in close association with neural crest-derived glia cells. In addition, we suggest potential genetic markers for more severely affected phenotypes, which may help prognosticate individual cochlear implantation outcomes. Developing better strategies for identifying which children with abnormal nerves will benefit from a cochlear implantation is crucial, as outcomes are usually far less robust and extremely variable in this population, and current neuroimaging and electrophysiologic parameters cannot accurately predict outcomes. Identification of a suitable treatment early will reduce the use of multiple interventions during the time-sensitive period for language development.
Assuntos
Implante Coclear , Surdez , Orelha Interna , Perda Auditiva Neurossensorial , Nervo Coclear , Feminino , Perda Auditiva Neurossensorial/genética , Proteínas de Homeodomínio , Humanos , Lactente , MasculinoRESUMO
Pelizaeus-Merzbacher-like disease (PMLD) is an autosomal recessive hypomyelinating leukodystrophy, which is clinically and radiologically similar to X-linked Pelizaeus-Merzbacher disease (PMD). PMLD is characterized by early-onset nystagmus, delayed development (motor delay, speech delay and dysarthria), dystonia, hypotonia typically evolving into spasticity, ataxia, seizures, optic atrophy, and diffuse leukodystrophy on magnetic resonance imaging (MRI). We identified a 12-year-old Caucasian/Hispanic male with the classical clinical characteristics of PMLD with lack of myelination of the subcortical white matter, and absence of the splenium of corpus callosum. Exome sequencing in the trio revealed novel compound heterozygous pathogenic mutations in SNAP29 (p.Leu119AlafsX15, c.354DupG and p.0?, c.2T > C). Quantitative analysis of the patient's blood cells through RNA sequencing identified a significant decrease in SNAP29 mRNA expression, while western blot analysis on fibroblast cells revealed a lack of protein expression compared to parental and control cells. Mutations in SNAP29 have previously been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. Typical skin features described in CEDNIK syndrome, such as generalized ichthyosis and keratoderma, were absent in our patient. Moreover, the early onset nystagmus and leukodystrophy were consistent with a PMLD diagnosis. These findings suggest that loss of SNAP29 function, which was previously associated with CEDNIK syndrome, is also associated with PMLD. Overall, our study expands the genetic spectrum of PMLD.
Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Heterozigoto , Mutação , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Criança , Humanos , Masculino , Prognóstico , Sequenciamento do ExomaRESUMO
Congenital inner ear malformations affecting both the osseous and membranous labyrinth can have a devastating impact on hearing and language development. With the exception of an enlarged vestibular aqueduct, non-syndromic inner ear malformations are rare, and their underlying molecular biology has thus far remained understudied. To identify molecular factors that might be important in the developing inner ear, we adopted a family-based trio exome sequencing approach in young unrelated subjects with severe inner ear malformations. We identified two previously unreported de novo loss-of-function variants in GREB1L [c.4368G>T;p.(Glu1410fs) and c.982C>T;p.(Arg328*)] in two affected subjects with absent cochleae and eighth cranial nerve malformations. The cochlear aplasia in these affected subjects suggests that a developmental arrest or problem at a very early stage of inner ear development exists, e.g., during the otic pit formation. Craniofacial Greb1l RNA expression peaks in mice during this time frame (E8.5). It also peaks in the developing inner ear during E13-E16, after which it decreases in adulthood. The crucial function of Greb1l in craniofacial development is also evidenced in knockout mice, which develop severe craniofacial abnormalities. In addition, we show that Greb1l-/- zebrafish exhibit a loss of abnormal sensory epithelia innervation. An important role for Greb1l in sensory epithelia innervation development is supported by the eighth cranial nerve deficiencies seen in both affected subjects. In conclusion, we demonstrate that GREB1L is a key player in early inner ear and eighth cranial nerve development. Abnormalities in cochleovestibular anatomy can provide challenges for cochlear implantation. Combining a molecular diagnosis with imaging techniques might aid the development of individually tailored therapeutic interventions in the future.
Assuntos
Surdez/genética , Doenças do Labirinto/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Proteínas de Peixe-Zebra/genética , Animais , Surdez/fisiopatologia , Modelos Animais de Doenças , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/fisiopatologia , Células Epiteliais/patologia , Gânglios Parassimpáticos/crescimento & desenvolvimento , Gânglios Parassimpáticos/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Doenças do Labirinto/fisiopatologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Peixe-ZebraRESUMO
Chromosome 1q41-q42 deletions have recently been associated with a recognizable neurodevelopmental syndrome of early childhood (OMIM 612530). Within this group, a predominant phenotype of developmental delay (DD), intellectual disability (ID), epilepsy, distinct dysmorphology, and brain anomalies on magnetic resonance imaging/computed tomography has emerged. Previous reports of patients with de novo deletions at 1q41-q42 have led to the identification of an evolving smallest region of overlap which has included several potentially causal genes including DISP1, TP53BP2, and FBXO28. In a recent report, a cohort of patients with de novo mutations in WDR26 was described that shared many of the clinical features originally described in the 1q41-q42 microdeletion syndrome (MDS). Here, we describe a novel germline FBXO28 frameshift mutation in a 3-year-old girl with intractable epilepsy, ID, DD, and other features which overlap those of the 1q41-q42 MDS. Through a familial whole-exome sequencing study, we identified a de novo FBXO28 c.972_973delACinsG (p.Arg325GlufsX3) frameshift mutation in the proband. The frameshift and resulting premature nonsense mutation have not been reported in any genomic database. This child does not have a large 1q41-q42 deletion, nor does she harbor a WDR26 mutation. Our case joins a previously reported patient also in whom FBXO28 was affected but WDR26 was not. These findings support the idea that FBXO28 is a monogenic disease gene and contributes to the complex neurodevelopmental phenotype of the 1q41-q42 gene deletion syndrome.
Assuntos
Transtornos Dismórficos Corporais/genética , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Deficiências do Desenvolvimento/genética , Epilepsia Resistente a Medicamentos/genética , Mutação da Fase de Leitura , Proteínas Ligases SKP Culina F-Box/genética , Transtornos Dismórficos Corporais/patologia , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Epilepsia Resistente a Medicamentos/patologia , Exoma , Feminino , Humanos , Fenótipo , Prognóstico , Sequenciamento do ExomaRESUMO
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Assuntos
Epigênese Genética , Neoplasias , Caracteres Sexuais , Humanos , Feminino , Neoplasias/genética , Masculino , Animais , Inativação do Cromossomo X , Hormônios Esteroides Gonadais/metabolismo , Impressão GenômicaRESUMO
Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.
Assuntos
Transtornos do Neurodesenvolvimento , Síndrome de Rett , Humanos , Síndrome de Rett/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genéticaRESUMO
Quaking RNA binding protein (QKI) is essential for oligodendrocyte development as myelination requires myelin basic protein mRNA regulation and localization by the cytoplasmic isoforms (e.g., QKI-6). QKI-6 is also highly expressed in astrocytes, which were recently demonstrated to have regulated mRNA localization. Here, we define the targets of QKI in the mouse brain via CLIPseq and we show that QKI-6 binds 3'UTRs of a subset of astrocytic mRNAs. Binding is also enriched near stop codons, mediated partially by QKI-binding motifs (QBMs), yet spreads to adjacent sequences. Using a viral approach for mosaic, astrocyte-specific gene mutation with simultaneous translating RNA sequencing (CRISPR-TRAPseq), we profile ribosome associated mRNA from QKI-null astrocytes in the mouse brain. This demonstrates a role for QKI in stabilizing CLIP-defined direct targets in astrocytes in vivo and further shows that QKI mutation disrupts the transcriptional changes for a discrete subset of genes associated with astrocyte maturation.
Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Citoplasma/metabolismo , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , TranscriptomaRESUMO
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We report here the results of RNA expression profiling of cerebellar white matter (CWM) tissue from two independent cohorts of MSA patients (n = 66) and healthy controls (HC; n = 66). RNA samples from bulk brain tissue and from oligodendrocytes obtained by laser capture microdissection (LCM) were sequenced. Differentially expressed genes (DEGs) were obtained and were examined before and after stratifying by MSA clinical sub-type.We detected the highest number of DEGs in the MSA-C group (n = 747) while only one gene was noted in MSA-P, highlighting the larger dysregulation of the transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis showed a downregulation of oligodendrocyte genes and an enrichment for myelination processes with a key role noted for the QKI gene. Additionally, we observed a significant upregulation of neuron-specific gene expression in MSA-C and enrichment for synaptic processes. A third cluster of genes was associated with the upregulation of astrocyte and endothelial genes, two cell types with a key role in inflammation processes. Finally, network analysis in MSA-C showed enrichment for ß-amyloid related functional classes, including the known Alzheimer's disease (AD) genes, APP and PSEN1.This is the largest RNA profiling study ever conducted on post-mortem brain tissue from MSA patients. We were able to define specific gene expression signatures for MSA-C highlighting the different stages of the complex neurodegenerative cascade of the disease that included alterations in several cell-specific transcriptional programs. Finally, several results suggest a common transcriptional dysregulation between MSA and AD-related genes despite the clinical and neuropathological distinctions between the two diseases.
Assuntos
Doenças Cerebelares/genética , Atrofia de Múltiplos Sistemas/genética , Transtornos Parkinsonianos/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Doenças Cerebelares/patologia , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Oligodendroglia/metabolismo , Transtornos Parkinsonianos/patologia , RNA/genética , Substância Branca/metabolismoRESUMO
BACKGROUND: Childhood hearing impairment affects language and cognitive development. Profound congenital sensorineural hearing impairment can be due to an abnormal cochleovestibular nerve (CVN) and cochleovestibular malformations, however, the etiology of these conditions remains unclear. METHODS: We used a trio-based exome sequencing approach to unravel the underlying molecular etiology of a child with a rare nonsyndromic CVN abnormality and cochlear hypoplasia. Clinical and imaging data were also reviewed. RESULTS: We identified a de novo missense variant [p(Asn174Tyr)] in the DNA-binding Homeodomain of SIX1, a gene which previously has been associated with autosomal dominant hearing loss (ADHL) and branchio-oto-renal or Branchio-otic syndrome, a condition not seen in this patient. CONCLUSIONS: SIX1 has an important function in otic vesicle patterning during embryogenesis, and mice show several abnormalities to their inner ear including loss of inner ear innervation. Previous reports on patients with SIX1 variants lack imaging data and nonsyndromic AD cases were reported to have no inner ear malformations. In conclusion, we show that a de novo variant in SIX1 in a patient with sensorineural hearing loss leads to cochleovestibular malformations and abnormalities of the CVN, without any other abnormalities. Without proper interventions, severe to profound hearing loss is devastating to both education and social integration. Choosing the correct intervention can be challenging and a molecular diagnosis may adjust intervention and improve outcomes, especially for rare cases.
Assuntos
Cóclea/anormalidades , Perda Auditiva Bilateral/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Homeodomínio/genética , Mutação de Sentido Incorreto , Nervo Vestibulococlear/anormalidades , Criança , Proteínas de Homeodomínio/química , Humanos , Masculino , Linhagem , Domínios Proteicos , Sequenciamento do ExomaRESUMO
DNA methylation is a key factor in epigenetic regulation, and contributes to the pathogenesis of many diseases, including various forms of cancers, and epigenetic events such X inactivation, cellular differentiation and proliferation, and embryonic development. The most conserved epigenetic modification in plants, animals, and fungi is 5-methylcytosine (5mC), which has been well characterized across a diverse range of species. Many technologies have been developed to measure modifications in methylation with respect to biological processes, and the most common method, long considered a gold standard for identifying regions of methylation, is bisulfite conversion. In this technique, DNA is treated with bisulfite, which converts cytosine residues to uracil, but does not affect cytosine residues that have been methylated, such as 5-methylcytosines. Following bisulfite conversion, the only cytosine residues remaining in the DNA, therefore, are those that have been methylated. Subsequent sequencing can then distinguish between unmethylated cytosines, which are displayed as thymines in the resulting amplified sequence of the sense strand, and 5-methylcytosines, which are displayed as cytosines in the resulting amplified sequence of the sense strand, at the single nucleotide level. In this chapter, we describe an array-based protocol for identifying methylated DNA regions. We discuss protocols for DNA quantification, bisulfite conversion, library preparation, and chip assembly, and present an overview of current methods for the analysis of methylation data.
Assuntos
Ilhas de CpG , Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Sulfitos/química , 5-Metilcitosina/química , Animais , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência de DNA/instrumentaçãoRESUMO
Altered DNA methylation events contribute to the pathogenesis and progression of metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). Investigations of global DNA methylation patterns in liver biopsies representing severe NAFLD fibrosis have been limited. We used the HumanMethylation 450K BeadChip to analyze genome-wide methylation in patients with biopsy-proven grade 3/4 NAFLD fibrosis/cirrhosis (N = 14) and age- and sex-matched controls with normal histology (N = 15). We identified 208 CpG islands (CGIs), including 99 hypomethylated and 109 hypermethylated CGIs, showing statistically significant evidence (adjusted P value < 0.05) for differential methylation between cirrhotic and normal samples. Comparison of ß values for each CGI to the read count of its corresponding gene obtained from RNA-sequencing analysis revealed negative correlation (adjusted P value < 0.05) for 34 transcripts. These findings provide supporting evidence for a role for CpG methylation in the pathogenesis of NAFLD-related cirrhosis, including confirmation of previously reported differentially methylated CGIs, and contribute new insight into the molecular mechanisms underlying the initiation and progression of liver fibrosis and cirrhosis.
Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA/métodos , Adulto , Estudos de Casos e Controles , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de SinaisRESUMO
AIM: To explore differential DNA methylation (DNAm) in Aicardi syndrome (AIC), a severe neurodevelopmental disorder with largely unknown etiology. PATIENTS & METHODS: We characterized DNAm in AIC female patients and parents using the Illumina 450 K array. Differential DNAm was assessed using the local outlier factor algorithm, and results were validated via qPCR in a larger set of AIC female patients, parents and unrelated young female controls. Functional epigenetic modules analysis was used to detect pathways integrating both genome-wide DNAm and RNA-seq data. RESULTS & CONCLUSION: We detected differential methylation patterns in AIC patients in several neurodevelopmental and/or neuroimmunological networks. These networks may be part of the underlying pathogenic mechanisms involved in the disease.