Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Phys Chem Chem Phys ; 26(6): 5447-5465, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275155

RESUMO

This work emphasizes the dry reforming of methane (DRM) reaction on citrate sol-gel-synthesized double perovskite oxides. Phase pure La2NiMnO6 shows very impressive DRM activity with H2/CO = 0.9, hence revealing a high prospect of next-generation catalysts. Although the starting double perovskite phase gets degraded into mostly binary oxide phases after a few hours of DRM activity, the activity continues up to 100 h. The regeneration of the original double perovskite out of decomposed phases by annealing at near synthesis temperature, followed by the spectacular retention of activity, is rather interesting and hitherto unreported. This result unravels unique reversible thermal switching between the original double perovskite phase and decomposed phases during DRM without compromising the activity and raises challenge to understand the role of decomposed phases evolved during DRM. We have addressed this unique feature of the catalyst via structure-property relationship using the in situ generated molecular level nanocomposite.

2.
Small ; 19(49): e2303639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37608461

RESUMO

Electrochromic smart windows (ESWs) offer an attractive option for regulating indoor lighting conditions. Electrochromic materials based on ion insertion/desertion mechanisms also present the possibility for energy storage, thereby increasing overall energy efficiency and adding value to the system. However, current electrochromic electrodes suffer from performance degradation, long response time, and low coloration efficiency. This work aims to produce defect-engineered brookite titanium dioxide (TiO2 ) nanorods (NRs) with different lengths and investigate their electrochromic performance as potential energy storage materials. The controllable synthesis of TiO2 NRs with inherent defects, along with smaller impedance and higher carrier concentrations, significantly enhances their electrochromic performance, including improved resistance to degradation, shorter response times, and enhanced coloration efficiency. The electrochromic performance of TiO2 NRs, particularly longer ones, is characterized by fast switching speeds (20 s for coloration and 12 s for bleaching), high coloration efficiency (84.96 cm2  C-1 at a 600 nm wavelength), and good stability, highlighting their potential for advanced electrochromic smart window applications based on Li+ ion intercalation.

3.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049687

RESUMO

Four different nanoshapes of cerium dioxide have been prepared (polycrystals, rods, cubes, and octahedra) and have been decorated with different metals (Ru, Pd, Au, Pt, Cu, and Ni) by incipient wetness impregnation (IWI) and ball milling (BM) methods. After an initial analysis based on oxygen consumption from CO2 pulse chemisorption, Ni-like metal, and two forms of CeO2 cubes and rods were selected for further research. Catalysts were characterized using the Brunauer-Emmett-Teller formula (BET), X-ray spectroscopy (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible spectrophotometry (UV-Vis), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR) and CO2 pulse chemisorption, and used to reduce of CO2 into CO (CO2 splitting). Adding metals to cerium dioxide enhanced the ability of CeO2 to release oxygen and concomitant reactivity toward the reduction of CO2. The effect of the metal precursor and concentration were evaluated. The highest CO2 splitting value was achieved for 2% Ni/CeO2-rods prepared by ball milling using Ni nitrate (412 µmol/gcat) and the H2 consumption (453.2 µmol/gcat) confirms the good redox ability of this catalyst.

4.
Small ; 17(6): e2006623, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33458957

RESUMO

The electro-oxidation of methanol to formate is an interesting example of the potential use of renewable energies to add value to a biosourced chemical commodity. Additionally, methanol electro-oxidation can replace the sluggish oxygen evolution reaction when coupled to hydrogen evolution or to the electroreduction of other biomass-derived intermediates. But the cost-effective realization of these reaction schemes requires the development of efficient and low-cost electrocatalysts. Here, a noble metal-free catalyst, Ni1- x Fex Se2 nanorods, with a high potential for an efficient and selective methanol conversion to formate is demonstrated. At its optimum composition, Ni0.75 Fe0.25 Se2 , this diselenide is able to produce 0.47 mmol cm-2  h-1 of formate at 50 mA cm-2 with a Faradaic conversion efficiency of 99%. Additionally, this noble-metal-free catalyst is able to continuously work for over 50 000 s with a minimal loss of efficiency, delivering initial current densities above 50 mA cm-2 and 2.2 A mg-1 in a 1.0 m KOH electrolyte with 1.0 m methanol at 1.5 V versus reversible hydrogen electrode. This work demonstrates the highly efficient and selective methanol-to-formate conversion on Ni-based noble-metal-free catalysts, and more importantly it shows a very promising example to exploit the electrocatalytic conversion of biomass-derived chemicals.

5.
Angew Chem Int Ed Engl ; 59(47): 20826-20830, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32767494

RESUMO

A methanol economy will be favored by the availability of low-cost catalysts able to selectively oxidize methanol to formate. This selective oxidation would allow extraction of the largest part of the fuel energy while concurrently producing a chemical with even higher commercial value than the fuel itself. Herein, we present a highly active methanol electrooxidation catalyst based on abundant elements and with an optimized structure to simultaneously maximize interaction with the electrolyte and mobility of charge carriers. In situ infrared spectroscopy combined with nuclear magnetic resonance spectroscopy showed that branched nickel carbide particles are the first catalyst determined to have nearly 100 % electrochemical conversion of methanol to formate without generating detectable CO2 as a byproduct. Electrochemical kinetics analysis revealed the optimized reaction conditions and the electrode delivered excellent activities. This work provides a straightforward and cost-efficient way for the conversion of organic small molecules and the first direct evidence of a selective formate reaction pathway.

6.
J Synchrotron Radiat ; 26(Pt 4): 1288-1293, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274456

RESUMO

Platinum thin films activated ex situ by oxygen plasma become reduced by the combined effect of an intense soft X-ray photon beam and condensed water. The evolution of the electronic structure of the surface has been characterized by near-ambient-pressure photoemission and mimics the inverse two-step sequence observed in the electro-oxidation of platinum, i.e. the surface-oxidized platinum species are reduced first and then the adsorbed species desorb in a second step leading to a surface dominated by metallic platinum. The comparison with measurements performed under high-vacuum conditions suggests that the reduction process is mainly induced by the reactive species generated by the radiolysis of water. When the photon flux is decreased, then the reduction process becomes slower.

7.
Opt Lett ; 44(18): 4535-4538, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517924

RESUMO

This study describes the detection of CO2 using macroporous silicon photonic crystals as thermal emitters. It demonstrates that the reduction of structural nonhomogeneities leads to an improvement of the photonic crystals' emission. Narrow emission bands (Q∼120) located within the R-branch of carbon dioxide were achieved. Measurements were made using a deuterated triglycine sulfate photodetector and the photonic crystals, heated to 400°C, as selective emitters. A gas cell with a CO2 concentration between 0 ppm and 10,000 ppm was installed in the center. Results show high sensibility and selectivity that could be used in current nondispersive infrared devices for improving their features. These results open the door to narrowband emission in the mid-infrared for spectroscopic gas detection.

8.
Langmuir ; 35(46): 14782-14790, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31647245

RESUMO

Semipermanently polarized hydroxyapatite, named SP/HAp(w), is obtained by applying a constant dc electric field of 1-10 kV/cm at 300-850 °C to the samples previously sintered in water vapor, while permanently polarized hydroxyapatite, PP/HAp(a), is produced by applying a dc electric field of 3 kV/cm at 1000 °C to the samples sintered in air. SP/HAp(w) has been used for biomedical applications, while PP/HAp(a) has been proved to be a valuable catalyst for N2 and CO2 fixation. In this work, structural differences between SP/HAp(w) and PP/HAp(a) have been ascertained using Raman microscopy, wide-angle X-ray diffraction, scanning electronic microscopy, high-resolution transmission electron microscopy, and grazing incidence X-ray diffraction. Results prove the existence of crystal distortion in the form of amorphous calcium phosphate and ß-tricalcium phosphate (ß-TCP) phases close to the surface because of the atmosphere used in the sintering process. The existence of an amorphous layer in the surface and the phase transition through ß-TCP of SP/HAp(w) are the structural factors responsible for the differences with respect to PP/HAp(a). Moreover, a superstructure has been identified in PP/HAp(a) samples, which could be another structural factor associated with enhanced conductivity, permanent polarization, and catalytic activity of this material.

9.
Sensors (Basel) ; 19(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736381

RESUMO

We modified and evaluated the performance of a CuO/Cu electrochemical electrode for chemical oxygen demand (COD) determination by covering it with a Nafion (Nf) film. The resulting modified CuONf/Cu electrode sensor was used for the electrochemical determination of COD in river, slaughterhouse and estuarine water samples in order to evaluate its performance for this particular task. It was compared with the CuO/Cu sensor with no Nafion. The main electrochemical characteristics of interest, resistance, sensitivity, accuracy and reproducibility, were assessed by means of Linear Sweep Voltammetry using glucose as a standard. Results of these essays indicate that the procedure used produced smooth and firmly attached Nf films covering the whole copper surface. This sensor was shown to be resistant to interferences and effective in electro-oxidation of a wide range of organic compounds and therefore very useful for COD determination. Using the newly developed CuONf/Cu electrode an analytical linear range of 50 to 1000 mg·L-1 COD, with a detection limit of 2.11 mg·L-1 (n = 6) COD was achieved. The comparison shows that the CuONf/Cu sensor is more appropriate for COD determination than its counterpart with no Nafion.

10.
Water Sci Technol ; 79(7): 1276-1286, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31123227

RESUMO

This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p-HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2-3, 5, 7), H2O2/p-HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p-HBZ conversion and 52% of total organic carbon (TOC) abatement.


Assuntos
Hidroxibenzoatos/química , Catálise , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Difração de Raios X
11.
Langmuir ; 34(22): 6470-6479, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29747511

RESUMO

Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In2S3, both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.

12.
Langmuir ; 34(36): 10634-10643, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30096238

RESUMO

Colloidal Pd2Sn and Au-Pd2Sn nanorods (NRs) with tuned size were produced by the reduction of Pd and Sn salts in the presence of size- and shape-controlling agents and the posterior growth of Au tips through a galvanic replacement reaction. Pd2Sn and Au-Pd2Sn NRs exhibited high catalytic activity toward quasi-homogeneous hydrogenation of alkenes (styrene and 1-octene) and alkynes (phenylacetylene and 1-octyne) in dichloromethane. Au-Pd2Sn NRs showed higher activity than Pd2Sn for 1-octene, 1-octyne, and phenylacetylene. In Au-Pd2Sn heterostructures, X-ray photoelectron spectroscopy evidenced an electron donation from the Pd2Sn NR to the Au tips. Such heterostructures showed distinct catalytic behavior in the hydrogenation of compounds containing a triple bond such as tolan. This can be explained by the aurophilicity of triple bonds. To further study this effect, Pd2Sn and Au-Pd2Sn NRs were also tested in the Sonogashira coupling reaction between iodobenzene and phenylacetylene in N, N-dimethylformamide. At low concentration, this reaction provided the expected product, tolan. However, at high concentration, more reduced products such as stilbene and 1,2-diphenylethane were also obtained, even without the addition of H2. A mechanism for this unexpected reduction is proposed.

13.
Angew Chem Int Ed Engl ; 57(32): 10212-10216, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29924472

RESUMO

By carefully mixing Pd metal nanoparticles with CeO2 polycrystalline powder under dry conditions, an unpredicted arrangement of the Pd-O-Ce interface is obtained in which an amorphous shell containing palladium species dissolved in ceria is covering a core of CeO2 particles. The robust contact that is generated at the nanoscale, along with mechanical forces generated during mixing, promotes the redox exchange between Pd and CeO2 and creates highly reactive and stable sites constituted by PdOx embedded into CeO2 surface layers. This specific arrangement outperforms conventional Pd/CeO2 reference catalysts in methane oxidation by lowering light-off temperature by more than 50°C and boosting the reaction rate. The origin of the outstanding activity is traced to the structural properties of the interface, modified at the nanoscale by mechanochemical interaction.

14.
Angew Chem Int Ed Engl ; 57(52): 17063-17068, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398301

RESUMO

In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.

15.
Phys Chem Chem Phys ; 19(27): 17708-17717, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28653713

RESUMO

We have synthesized and tested a highly active Cu doped mesoporous CeO2 catalyst system for the low temperature water-gas shift (WGS) reaction. While typical oxide-supported copper WGS catalysts are characterized by high copper loadings (30-40%), the morphological properties of the mesoporous CeO2 material enable high catalytic activity at copper loadings as low as 1%. Operando X-ray diffraction, in situ X-ray absorption near-edge structure spectroscopy (XANES), and operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) methods were used to probe the interactions between the metal and mesoporous oxide components under reaction conditions. Copper was observed to undergo reduction from oxide to metal under WGS conditions at 150 °C, while the CeO2 lattice was observed to expand upon heating, indicating Ce3+ formation correlated with CO2 production. The active state of the catalysts was confirmed by in situ XANES to contain Cu0 and partially reduced CeO2. DRIFTS analysis revealed carboxyl species bound to copper during reduction, as well as formate and carbonate surface species on ceria. Lower concentrations of copper were observed to foster enhanced metal-support interactions.

16.
Angew Chem Int Ed Engl ; 56(1): 375-379, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27925439

RESUMO

The surface atomic arrangement of metal oxides determines their physical and chemical properties, and the ability to control and optimize structural parameters is of crucial importance for many applications, in particular in heterogeneous catalysis and photocatalysis. Whereas the structures of macroscopic single crystals can be determined with established methods, for nanoparticles (NPs), this is a challenging task. Herein, we describe the use of CO as a probe molecule to determine the structure of the surfaces exposed by rod-shaped ceria NPs. After calibrating the CO stretching frequencies using results obtained for different ceria single-crystal surfaces, we found that the rod-shaped NPs actually restructure and expose {111} nanofacets. This finding has important consequences for understanding the controversial surface chemistry of these catalytically highly active ceria NPs and paves the way for the predictive, rational design of catalytic materials at the nanoscale.

17.
Chemistry ; 22(39): 13894-13899, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27531470

RESUMO

A composite of the metal-organic framework (MOF) NH2 -MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2  g(Ni)-1  h-1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.

18.
Chemistry ; 22(38): 13459-63, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27246987

RESUMO

An efficient heterogenized water oxidation catalyst (2_TiO2 ) has been synthesized by immobilizing the Kläui-type organometallic precursor [Cp*Ir{P(O)(OH)2 }3 ]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2 . Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.7 min(-1) in the oxidation of water to O2 driven by NaIO4 at nearly neutral pH, and a TON only limited by the amount of NaIO4 used, as indicated by multiple run experiments. Furthermore, while roughly 40 % leaching is observed during the first catalytic run, 2'_TiO2 does not undergo any further leaching even when in contact with strongly basic solutions and completely maintains its activity for thousands of cycles. NMR studies, in combination with ICP-OES (inductively coupled plasma optical emission spectrometry), indicate that the activation of 2_TiO2 occurs through the initial oxidative dissociation of PO4 (3-) , ultimately leading to active centers in which a 1:1 P/Ir ratio is present (derived from the removal of two PO4 (3-) units) likely missing the Cp* ligand.

19.
Chemphyschem ; 17(14): 2190-6, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26973083

RESUMO

The accurate engineering of interfaces between inorganic nanocrystals and semiconducting organic molecules is currently viewed as key for further developments in critical fields such as photovoltaics and photocatalysis. In this work, a new and unconventional source of interface interaction based on metal-metal bonds is presented. With this aim, an Au(I) organometallic gelator was exploited for the formation of hydrogel-like nanocomposites containing inorganic nanoparticles and conjugated organic molecules. Noteworthy, the establishment of metallophilic interactions at the interface between the two moieties greatly enhances interparticle coupling in the composites. Thus, we believe that this new hybrid system might represent a promising alternative in several fields, such as in the fabrication of improved light-harvesting devices.

20.
Phys Chem Chem Phys ; 18(23): 15972-9, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27240884

RESUMO

Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti(3+), significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa