Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490916

RESUMO

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteômica , Receptores de Antígenos de Linfócitos T , Antígenos de Neoplasias/metabolismo , Epitopos , Imunoterapia , Linfócitos do Interstício Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Nat Immunol ; 21(2): 178-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959982

RESUMO

Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading. Furthermore, concentration-dependent addition of vitamin B-related metabolite ligands of MR1 reduced TCR recognition of cancer cells, suggesting that recognition occurred via sensing of the cancer metabolome. An MR1-restricted T cell clone mediated in vivo regression of leukemia and conferred enhanced survival of NSG mice. TCR transfer to T cells of patients enabled killing of autologous and nonautologous melanoma. These findings offer opportunities for HLA-independent, pan-cancer, pan-population immunotherapies.


Assuntos
Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Humanos , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Camundongos
4.
J Immunol ; 204(7): 1943-1953, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32102902

RESUMO

The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1157-165-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles. The third TCR engaged a flipped peptide conformation, leading to the recognition of off-target peptides sharing little similarity with the cognate peptide. These data show that TCRs specific for a cognate peptide recognize discrete peptide repertoires and reconciles how an individual's limited TCR repertoire following negative selection in the thymus is able to recognize a vastly larger antigenic pool.


Assuntos
Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular , Humanos , Biblioteca de Peptídeos
5.
J Biol Chem ; 295(33): 11486-11494, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32532817

RESUMO

T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.


Assuntos
Antígenos de Neoplasias/imunologia , Antígeno HLA-A2/imunologia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Antígenos de Neoplasias/química , Cristalografia por Raios X , Antígeno HLA-A2/química , Humanos , Modelos Moleculares , Proteínas de Neoplasias/química , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química
6.
J Biol Chem ; 292(3): 802-813, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27903649

RESUMO

T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos , Receptores de Antígenos de Linfócitos T , Telomerase , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Reações Cruzadas , Humanos , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Telomerase/química , Telomerase/imunologia
7.
J Immunol ; 197(3): 971-82, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307560

RESUMO

The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells.


Assuntos
Apresentação de Antígeno/imunologia , Edição de Genes/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citometria de Fluxo , Vetores Genéticos , Humanos , Lentivirus , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Subpopulações de Linfócitos T/imunologia
8.
Genes Chromosomes Cancer ; 56(5): 421-426, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28124441

RESUMO

The commonest tumors associated with neurofibromatosis type 1 (NF1) are benign peripheral nerve sheath tumors, called neurofibromas. Malignant transformation of neurofibromas into aggressive MPNSTs may occur with a poor patient prognosis. A cooperative role of SUZ12 or EED inactivation, along with NF1, TP53, and CDKN2A loss-of-function, has been proposed to drive progression to MPNSTs. An exome sequencing analysis of eight MPNSTs, one plexiform neurofibroma, and seven cutaneous neurofibromas was undertaken. Biallelic inactivation of the NF1 gene was observed in the plexiform neurofibroma and the MPNSTs, underlining that somatic biallelic NF1 inactivation is likely to be the initiating event for plexiform neurofibroma genesis, although it is unlikely to be sufficient for the subsequent MPNST development. The majority (5/8) of MPNSTs in our analyses demonstrated homozygous or heterozygous deletions of CDKN2A, which may represent an early event following NF1 LOH in the malignant transformation of Schwann cells from plexiform neurofibroma to MPNST. Biallelic somatic alterations of SUZ12 was also found in 4/8 MPNSTs. EED biallelic alterations were detected in 2 of the other four MPNSTs, with one tumor having a homozygous EED deletion. A missense mutation in the chromatin regulator KDM2B was also identified in one MPNST. No TP53 point mutations were found in this study, confirming previous data that TP53 mutations may be relatively rare in NF1-associated MPNSTs. Our study confirms the frequent biallelic inactivation of PRC2 subunits SUZ12 and EED in MPNSTs, and suggests the implication of KDM2B.


Assuntos
Biomarcadores Tumorais/genética , Mutação/genética , Neoplasias de Bainha Neural/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Proteínas F-Box/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Neoplasias , Estadiamento de Neoplasias , Complexo Repressor Polycomb 2/genética , Prognóstico , Fatores de Transcrição
9.
J Biol Chem ; 291(17): 8951-9, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26917722

RESUMO

Human CD8(+) cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu(3) have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100(280-288) peptide showed that Glu(3) was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu(3) → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/imunologia , Linfócitos T CD8-Positivos/patologia , Humanos , Melanoma/genética , Melanoma/patologia , Estrutura Quaternária de Proteína , Receptores de Antígenos de Linfócitos T/genética , Antígeno gp100 de Melanoma/genética
10.
Immunology ; 146(1): 11-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26076649

RESUMO

Analysis of antigen-specific T-cell populations by flow cytometry with peptide-MHC (pMHC) multimers is now commonplace. These reagents allow the tracking and phenotyping of T cells during infection, autoimmunity and cancer, and can be particularly revealing when used for monitoring therapeutic interventions. In 2009, we reviewed a number of 'tricks' that could be used to improve this powerful technology. More recent advances have demonstrated the potential benefits of using higher order multimers and of 'boosting' staining by inclusion of an antibody against the pMHC multimer. These developments now allow staining of T cells where the interaction between the pMHC and the T-cell receptor is over 20-fold weaker (K(D) > 1 mm) than could previously be achieved. Such improvements are particularly relevant when using pMHC multimers to stain anti-cancer or autoimmune T-cell populations, which tend to bear lower affinity T-cell receptors. Here, we update our previous work to include discussion of newer tricks that can produce substantially brighter staining even when using log-fold lower concentrations of pMHC multimer. We further provide a practical guide to using pMHC multimers that includes a description of several common pitfalls and how to circumvent them.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Coloração e Rotulagem/métodos , Anticorpos/imunologia , Linfócitos T CD8-Positivos/citologia , Citometria de Fluxo/métodos , Corantes Fluorescentes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Peptídeos/imunologia , Multimerização Proteica
11.
Front Oncol ; 14: 1419528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39445059

RESUMO

Background: Major histocompatibility complex class-1-related protein (MR1), unlike human leukocyte antigen (HLA) class-1, was until recently considered to be monomorphic. MR1 presents metabolites in the context of host responses to bacterial infection. MR1-restricted TCRs specific to tumor cells have been described, raising interest in their potential therapeutic application for cancer treatment. The diversity of MR1-ligand biology has broadened with the observation that single nucleotide variants (SNVs) exist within MR1 and that allelic variants can impact host immunity. Methods: The TCR from a MR1-restricted T-cell clone, MC.7.G5, with reported cancer specificity and pan-cancer activity, was cloned and expressed in Jurkat E6.1 TCRαß- ß2M- CD8+ NF-κB:CFP NFAT:eGFP AP-1:mCherry cells or in human donor T cells. Functional activity of 7G5.TCR-T was demonstrated using cytotoxicity assays and by measuring cytokine release after co-culture with cancer cell lines with or without loading of previously described MR1 ligands. MR1 allele sequencing was undertaken after the amplification of the MR1 gene region by PCR. In vivo studies were undertaken at Labcorp Drug Development (Ann Arbor, MI, USA) or Epistem Ltd (Manchester, UK). Results: The TCR cloned from MC.7.G5 retained MR1-restricted functional cytotoxicity as 7G5.TCR-T. However, activity was not pan-cancer, as initially reported with the clone MC.7.G5. Recognition was restricted to cells expressing a SNV of MR1 (MR1*04) and was not cancer-specific. 7G5.TCR-T and 7G5-like TCR-T cells reacted to both cancer and healthy cells endogenously expressing MR1*04 SNVs, which encode R9H and H17R substitutions. This allelic specificity could be overcome by expressing supraphysiological levels of the wild-type MR1 (MR1*01) in cell lines. Conclusions: Healthy individuals harbor T cells reactive to MR1 variants displaying self-ligands expressed in cancer and benign tissues. Described "cancer-specific" MR1-restricted TCRs need further validation, covering conserved allomorphs of MR1. Ligands require identification to ensure targeting MR1 is restricted to those specific to cancer and not normal tissues. For the wider field of immunology and transplant biology, the observation that MR1*04 may behave as an alloantigen warrants further study. .

12.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382893

RESUMO

Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRß-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Membrana Celular , Comunicação Celular , Reações Cruzadas , Reparo do DNA , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor
13.
J Clin Invest ; 130(5): 2673-2688, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310221

RESUMO

Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.


Assuntos
Antígenos HLA/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/genética , Anticorpos Antineoplásicos/imunologia , Especificidade de Anticorpos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Cristalografia por Raios X , Antígenos HLA/química , Antígenos HLA/genética , Humanos , Indicadores e Reagentes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mimetismo Molecular/genética , Mimetismo Molecular/imunologia , Peptídeos/química , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
14.
Cell Rep ; 32(2): 107885, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668259

RESUMO

T cell recognition of peptides presented by human leukocyte antigens (HLAs) is mediated by the highly variable T cell receptor (TCR). Despite this built-in TCR variability, individuals can mount immune responses against viral epitopes by using identical or highly related TCRs expressed on CD8+ T cells. Characterization of these TCRs has extended our understanding of the molecular mechanisms that govern the recognition of peptide-HLA. However, few examples exist for CD4+ T cells. Here, we investigate CD4+ T cell responses to the internal proteins of the influenza A virus that correlate with protective immunity. We identify five internal epitopes that are commonly recognized by CD4+ T cells in five HLA-DR1+ subjects and show conservation across viral strains and zoonotic reservoirs. TCR repertoire analysis demonstrates several shared gene usage biases underpinned by complementary biochemical features evident in a structural comparison. These epitopes are attractive targets for vaccination and other T cell therapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Epitopos/imunologia , Região Variável de Imunoglobulina/genética , Vírus da Influenza A/imunologia , Adulto , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aves/virologia , Regiões Determinantes de Complementaridade/química , Sequência Conservada , Epitopos/química , Feminino , Células Germinativas/metabolismo , Antígeno HLA-DR1/imunologia , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Suínos/virologia , Doadores de Tecidos , Proteínas Virais/imunologia , Adulto Jovem , Zoonoses/imunologia , Zoonoses/virologia
15.
Front Immunol ; 10: 319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930889

RESUMO

Recent immunotherapeutic approaches using adoptive cell therapy, or checkpoint blockade, have demonstrated the powerful anti-cancer potential of CD8 cytotoxic T-lymphocytes (CTL). While these approaches have shown great promise, they are only effective in some patients with some cancers. The potential power, and relative ease, of therapeutic vaccination against tumour associated antigens (TAA) present in different cancers has been a long sought-after approach for harnessing the discriminating sensitivity of CTL to treat cancer and has seen recent renewed interest following cancer vaccination successes using unique tumour neoantigens. Unfortunately, results with TAA-targeted "universal" cancer vaccines (UCV) have been largely disappointing. Infectious disease models have demonstrated that T-cell clonotypes that recognise the same antigen should not be viewed as being equally effective. Extrapolation of this notion to UCV would suggest that the quality of response in terms of the T-cell receptor (TCR) clonotypes induced might be more important than the quantity of the response. Unfortunately, there is little opportunity to assess the effectiveness of individual T-cell clonotypes in vivo. Here, we identified effective, persistent T-cell clonotypes in an HLA A2+ patient following successful tumour infiltrating lymphocyte (TIL) therapy. One such T-cell clone was used to generate super-agonist altered peptide ligands (APLs). Further refinement produced an APL that was capable of inducing T-cells in greater magnitude, and with improved effectiveness, from the blood of all 14 healthy donors tested. Importantly, this APL also induced T-cells from melanoma patient blood that exhibited superior recognition of the patient's own tumour compared to those induced by the natural antigen sequence. These results suggest that use of APL to skew the clonotypic quality of T-cells induced by cancer vaccination could provide a promising avenue in the hunt for the UCV "magic bullet."


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Humanos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
16.
Bio Protoc ; 7(13)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28748203

RESUMO

T cell receptor (TCR) recognition of foreign peptide fragments, presented by peptide major histocompatibility complex (pMHC), governs T-cell mediated protection against pathogens and cancer. Many factors govern T-cell sensitivity, including the affinity of the TCR-pMHC interaction and the stability of pMHC on the surface of antigen presenting cells. These factors are particularly relevant for the peptide vaccination field, in which more stable pMHC interactions could enable more effective protection against disease. Here, we discuss a method for the determination of pMHC stability that we have used to investigate HIV immune escape, T-cell sensitivity to cancer antigens and mechanisms leading to autoimmunity.

17.
J Immunol Methods ; 430: 43-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826277

RESUMO

Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Peptídeos/genética , Peptídeos/imunologia , Antígenos Virais/imunologia , Células Clonais/imunologia , Citotoxicidade Imunológica , Ebolavirus/imunologia , ELISPOT/métodos , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
18.
Front Immunol ; 4: 221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935598

RESUMO

Recent early stage clinical trials evaluating the adoptive transfer of patient CD8(+) T-cells re-directed with antigen receptors recognizing tumors have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumor-specific T-cells with therapies that increase their anti-tumor capacity is viewed as a promising strategy to improve treatment outcome. The ex vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell-intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumor immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa