Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Small ; : e2311016, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461530

RESUMO

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

2.
Environ Sci Technol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317381

RESUMO

Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.

3.
Environ Res ; 242: 117667, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37980994

RESUMO

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Assuntos
Compostos Férricos , Compostos Ferrosos , Shewanella putrefaciens , Oxirredução , Fosfatos , Minerais
4.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
5.
Environ Microbiol ; 25(12): 3139-3150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697680

RESUMO

Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed.


Assuntos
Cobre , Nanopartículas , Nanopartículas/química
6.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36853045

RESUMO

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Assuntos
Arsênio , Geobacter , Compostos Férricos/metabolismo , Antimônio , Arsênio/metabolismo , Minerais/metabolismo , Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , Oxirredução
7.
Biofouling ; 39(8): 785-799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877442

RESUMO

Nuclear facility discharge pipelines accumulate inorganic and microbial fouling and radioactive contamination, however, research investigating the mechanisms that lead to their accumulation is limited. Using the Sellafield discharge pipeline as a model system, this study utilised modified Robbins devices to investigate the potential interplay between inorganic and biological processes in supporting fouling formation and radionuclide uptake. Initial experiments showed polyelectrolytes (present in pipeline effluents), had minimal effects on fouling formation. Biofilms were, however, found to be the key component promoting fouling, leading to increased uptake of inorganic particulates and metal contaminants (Cs, Sr, Co, Eu and Ru) compared to a non-biofilm control system. Biologically-mediated uptake mechanisms were implicated in Co and Ru accumulation, with a potential bioreduced Ru species identified on the biofilm system. This research emphasised the key role of biofilms in promoting fouling in discharge pipelines, advocating for the use of biocide treatments methods.


Assuntos
Incrustação Biológica , Desinfetantes , Biofilmes , Incrustação Biológica/prevenção & controle , Transporte Biológico , Metais , Membranas Artificiais
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511377

RESUMO

The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. Escherichia coli is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H2 and ethanol. However, the natural capacity of E. coli to generate these compounds is insufficient for commercial or industrial purposes. Metabolic engineering allows for the rewiring of the carbon source towards H2 production, although the strategies for achieving this aim are difficult to foresee. In this work, we use metabolomics platforms through GC-MS and FT-IR techniques to detect metabolic bottlenecks in the engineered ΔldhΔgndΔfrdBC::kan (M4) and ΔldhΔgndΔfrdBCΔtdcE::kan (M5) E. coli strains, previously reported as improved H2 and ethanol producers. In the M5 strain, increased intracellular citrate and malate were detected by GC-MS. These metabolites can be redirected towards acetyl-CoA and formate by the overexpression of the citrate lyase (CIT) enzyme and by co-overexpressing the anaplerotic human phosphoenol pyruvate carboxykinase (hPEPCK) or malic (MaeA) enzymes using inducible promoter vectors. These strategies enhanced specific H2 production by up to 1.25- and 1.49-fold, respectively, compared to the reference strains. Other parameters, such as ethanol and H2 yields, were also enhanced. However, these vectors may provoke metabolic burden in anaerobic conditions. Therefore, alternative strategies for a tighter control of protein expression should be addressed in order to avoid undesirable effects in the metabolic network.


Assuntos
Escherichia coli , Engenharia Metabólica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Hidrogênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Metabolômica
9.
Metabolomics ; 18(8): 56, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857216

RESUMO

INTRODUCTION: Glycerol is a byproduct from the biodiesel industry that can be biotransformed by Escherichia coli to high added-value products such as succinate under aerobic conditions. The main genetic engineering strategies to achieve this aim involve the mutation of succinate dehydrogenase (sdhA) gene and also those responsible for acetate synthesis including acetate kinase, phosphate acetyl transferase and pyruvate oxidase encoded by ackA, pta and pox genes respectively in the ΔsdhAΔack-ptaΔpox (M4) mutant. Other genetic manipulations to rewire the metabolism toward succinate consist on the activation of the glyoxylate shunt or blockage the pentose phosphate pathway (PPP) by deletion of isocitrate lyase repressor (iclR) or gluconate dehydrogenase (gnd) genes on M4-ΔiclR and M4-Δgnd mutants respectively. OBJECTIVE: To deeply understand the effect of the blocking of the pentose phosphate pathway (PPP) or the activation of the glyoxylate shunt, metabolite profiles were analyzed on M4-Δgnd, M4-ΔiclR and M4 mutants. METHODS: Metabolomics was performed by FT-IR and GC-MS for metabolite fingerprinting and HPLC for quantification of succinate and glycerol. RESULTS: Most of the 65 identified metabolites showed lower relative levels in the M4-ΔiclR and M4-Δgnd mutants than those of the M4. However, fructose 1,6-biphosphate, trehalose, isovaleric acid and mannitol relative concentrations were increased in M4-ΔiclR and M4-Δgnd mutants. To further improve succinate production, the synthesis of mannitol was suppressed by deletion of mannitol dehydrogenase (mtlD) on M4-ΔgndΔmtlD mutant that increase ~ 20% respect to M4-Δgnd. CONCLUSION: Metabolomics can serve as a holistic tool to identify bottlenecks in metabolic pathways by a non-rational design. Genetic manipulation to release these restrictions could increase the production of succinate.


Assuntos
Escherichia coli , Ácido Succínico , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , Glioxilatos/metabolismo , Manitol/metabolismo , Engenharia Metabólica , Metabolômica , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Succínico/metabolismo
10.
Geochem Trans ; 23(1): 2, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167930

RESUMO

The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.

11.
Environ Sci Technol ; 56(14): 10105-10119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763428

RESUMO

High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/química , Compostos Férricos/metabolismo , Compostos Ferrosos , Água Subterrânea/química , Nitratos/análise , Oxirredução , Poluentes Químicos da Água/química
12.
Appl Environ Microbiol ; 87(22): e0139021, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34495739

RESUMO

The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.


Assuntos
Nanopartículas Metálicas , Shewanella , Microbiologia Industrial , Shewanella/metabolismo
13.
Environ Sci Technol ; 55(22): 15181-15195, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34706533

RESUMO

Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios > 1) noted Fe(III)-reducers (induced by ammonium oxidation) and As(V)-reducers, emphasizing the As mobilization via Fe(III) and/or As(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As-N-S-Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , DNA , Compostos Férricos , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 55(8): 4597-4606, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33755437

RESUMO

Geological disposal is the globally preferred long-term solution for higher activity radioactive wastes (HAW) including intermediate level waste (ILW). In a cementitious disposal system, cellulosic waste items present in ILW may undergo alkaline hydrolysis, producing significant quantities of isosaccharinic acid (ISA), a chelating agent for radionuclides. Although microbial degradation of ISA has been demonstrated, its impact upon the fate of radionuclides in a geological disposal facility (GDF) is a topic of ongoing research. This study investigates the fate of U(VI) in pH-neutral, anoxic, microbial enrichment cultures, approaching conditions similar to the far field of a GDF, containing ISA as the sole carbon source, and elevated phosphate concentrations, incubated both (i) under fermentation and (ii) Fe(III)-reducing conditions. In the ISA-fermentation experiment, U(VI) was precipitated as insoluble U(VI)-phosphates, whereas under Fe(III)-reducing conditions, the majority of the uranium was precipitated as reduced U(IV)-phosphates, presumably formed via enzymatic reduction mediated by metal-reducing bacteria, including Geobacter species. Overall, this suggests the establishment of a microbially mediated "bio-barrier" extending into the far field geosphere surrounding a GDF is possible and this biobarrier has the potential to evolve in response to GDF evolution and can have a controlling impact on the fate of radionuclides.


Assuntos
Urânio , Biomineralização , Compostos Férricos , Oxirredução , Fosfatos , Açúcares Ácidos
15.
Environ Sci Technol ; 55(23): 15862-15872, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34825817

RESUMO

99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200-1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under "no added Fe(III)" and "with added Fe(III)" conditions (added as ferrihydrite) at three Tc concentrations (10-11, 10-6, and 10-4 mol L-1). In the 10-6 mol L-1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.


Assuntos
Compostos Férricos , Resíduos Radioativos , Sedimentos Geológicos , Ferro , Oxirredução , Espectroscopia por Absorção de Raios X
16.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680873

RESUMO

Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed.IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.


Assuntos
Biomineralização , Cobre/metabolismo , Geobacter/metabolismo , Nanopartículas Metálicas , Sulfetos/metabolismo
17.
Environ Sci Technol ; 54(4): 2268-2276, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31934763

RESUMO

As the dominant radionuclide by mass in many radioactive wastes, the control of uranium mobility in contaminated environments is of high concern. U speciation can be governed by microbial interactions, whereby metal-reducing bacteria are able to reduce soluble U(VI) to insoluble U(IV), providing a method for removal of U from contaminated groundwater. Although microbial U(VI) reduction is widely reported, the mechanism(s) for the transformation of U(VI) to relatively insoluble U(IV) phases are poorly understood. By combining a suite of analyses, including luminescence, U M4-edge high-energy resolved fluorescence detection-X-ray absorption near-edge structure (XANES), and U L3-edge XANES/extended X-ray absorption fine structure, we show that the microbial reduction of U(VI) by the model Fe(III)-reducing bacterium, Shewanella oneidensis MR1, proceeds via a single electron transfer to form a pentavalent U(V) intermediate which disproportionates to form U(VI) and U(IV). Furthermore, we have identified significant U(V) present in post reduction solid phases, implying that U(V) may be stabilized for up to 120.5 h.


Assuntos
Shewanella , Urânio , Biodegradação Ambiental , Compostos Férricos , Oxirredução
18.
Environ Sci Technol ; 54(1): 129-136, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31838844

RESUMO

Uranium is a risk-driving radionuclide in both radioactive waste disposal and contaminated land scenarios. In these environments, a range of biogeochemical processes can occur, including sulfate reduction, which can induce sulfidation of iron (oxyhydr)oxide mineral phases. During sulfidation, labile U(VI) is known to reduce to relatively immobile U(IV); however, the detailed mechanisms of the changes in U speciation during these biogeochemical reactions are poorly constrained. Here, we performed highly controlled sulfidation experiments at pH 7 and pH 9.5 on U(VI) adsorbed to ferrihydrite and investigated the system using geochemical analyses, X-ray absorption spectroscopy (XAS), and computational modeling. Analysis of the XAS data indicated the formation of a novel, transient U(VI)-persulfide complex as an intermediate species during the sulfidation reaction, concomitant with the transient release of uranium to the solution. Extended X-ray absorption fine structure (EXAFS) modeling showed that a persulfide ligand was coordinated in the equatorial plane of the uranyl moiety, and formation of this species was supported by computational modeling. The final speciation of U was nanoparticulate U(IV) uraninite, and this phase was evident at 2 days at pH 7 and 1 year at pH 9.5. Our identification of a new, labile U(VI)-persulfide species under environmentally relevant conditions may have implications for U mobility in sulfidic environments pertinent to radioactive waste disposal and contaminated land scenarios.


Assuntos
Ferro , Urânio , Oxirredução , Óxidos , Sulfetos
19.
Int J Syst Evol Microbiol ; 69(12): 3666-3671, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29580368

RESUMO

Strain NB2006T was isolated from an isosaccharinate-degrading, nitrate-reducing enrichment culture in minimal freshwater medium at pH 10. Analysis of the 16S rRNA gene sequence indicated that this strain was most closely related to species of the newly established genus Anaerobacillus. This was supported by phenotypic and metabolic characterisation that showed that NB2006T was rod-shaped, Gram-stain-positive, motile and formed endospores. It was an aerotolerant anaerobe and an obligate alkaliphile that grew at pH 8.5-11, could tolerate up to 6 % (w/v) NaCl, and grew at a temperature between 10 and 40 °C. In addition, it could utilise a number of organic substrates, and was able to reduce nitrate and arsenate. The predominant cellular fatty acids were C16 : 0, C16 : 1ω11c, anteiso-C15 : 0, iso-C15 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C14 : 0. The cell wall peptidoglycan contained meso-diaminopimelic acid and the DNA G+C content was 37.7 mol%. In silico DNA-DNA hybridization with the four known species of the genus Anaerobacillus showed 21.8, 21.9, 22.4, and 21.5 % relatedness to Anaerobacillusarseniciselenatis DSM 15340T, Anaerobacilus alkalidiazotrophicus DSM 22531T, Anaerobacillusalkalilacustris DSM 18345T, and Anaerobacillus macyae DSM 16346T, respectively. NB2006T differed from strains of other species of the genus Anaerobacillus in its ability to metabolise isosaccharinate, an alkaline hydrolysis product of cellulose. On the basis of the consensus of phylogenetic and phenotypic analyses, this strain represents a novel species of the genus Anaerobacillus, for which the name Anaerobacillus isosaccharinicus sp. nov. is proposed. The type strain is NB2006T (=DSM 100644T=LMG 30032T).


Assuntos
Bacillaceae/classificação , Filogenia , Açúcares Ácidos/metabolismo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Environ Sci Technol ; 53(16): 9915-9925, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31317743

RESUMO

Metaschoepite is commonly found in U-contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO3·nH2O) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield Ltd. site. The column systems either remained oxic or became anoxic due to electron donor additions, and the columns were sacrificed after 6- and 12-months for analysis. Solution chemistry, extractions, and bulk and micro/nano-focus X-ray spectroscopies were used to track changes in U distribution and behavior. In the oxic columns, U migration was extensive, with UO22+ identified in effluents after 6-months of reaction using fluorescence spectroscopy. Unusually, in the electron-donor amended columns, during microbially mediated sulfate reduction, significant amounts of UO2-like colloids (>60% of the added U) were found in the effluents using TEM. XAS analysis of the U remaining associated with the reduced sediments confirmed the presence of trace U(VI), noncrystalline U(IV), and biogenic UO2, with UO2 becoming more dominant with time. This study highlights the potential for U(IV) colloid production from U(VI) solids under reducing conditions and the complexity of U biogeochemistry in dynamic systems.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Oxirredução , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa