Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 62(10): 1193-1201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849092

RESUMO

Pseudomonas sp. A46 was first isolated from mercury-contaminated groundwater in Taiwan. This study is the first to report the draft whole-genome sequence of Pseudomonas sp. A46. Its genome consists of 126 contigs, with a total length of 6,782,516 bp and a GC content of 64.7%. Phylogenetic analysis based on 16 S rRNA gene sequences revealed that Pseudomonas sp. A46 is closely related to Pseudomonas citronellolis. Assessment of the draft genome sequence revealed that Pseudomonas sp. A46 harbors sets of genes conferring resistance to heavy metals, such as mercury, zinc, lead, copper, cadmium, chromate, and arsenate. These identified genes enable this bacterium to tolerate heavy metal stress.


Assuntos
Mercúrio , Metais Pesados , Arseniatos , Cádmio , Cromatos , Cobre , Metais Pesados/análise , Filogenia , Pseudomonas/genética , Águas Residuárias , Zinco
2.
J Environ Manage ; 311: 114836, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35272161

RESUMO

In this study, the developed innovative immobilized Clostridium butyricum (ICB) (hydrogen-producing bacteria) column scheme was applied to cleanup chlorinated-ethene [mainly cis-1,2-dichloroethene (cis-DCE)] polluted groundwater in situ via the anaerobic reductive dechlorinating processes. The objectives were to assess the effectiveness of the field application of ICB scheme on the cleanup of cis-DCE polluted groundwater, and characterize changes of microbial communities after ICB application. Three remediation wells and two monitor wells were installed within the cis-DCE plume. In the remediation well, a 1.2-m PVC column (radius = 2.5 cm) (filled with ICB beads) and 20 L of slow polycolloid-releasing substrate (SPRS) were supplied for hydrogen production enhancement and primary carbon supply, respectively. Groundwater samples from remediation and monitor wells were analyzed periodically for cis-DCE and its degradation byproducts, microbial diversity, reductive dehalogenase, and geochemical indicators. Results reveal that cis-DCE was significantly decreased within the ICB and SPRS influence zone. In a remediation well with ICB injection, approximately 98.4% of cis-DCE removal (initial concentration = 1.46 mg/L) was observed with the production of ethene (end-product of cis-DCE dechlorination) after 56 days of system operation. Up to 0.72 mg/L of hydrogen was observed in remediation wells after 14 days of ICB and SPRS introduction, which corresponded with the increased population of Dehalococcoides spp. (Dhc) (increased from 3.76 × 103 to 5.08 × 105 gene copies/L). Results of metagenomics analyses show that the SPRS and ICB introduction caused significant impacts on the bacterial communities, and increased Bacteroides, Citrobacter, and Desulfovibrio populations were observed, which had significant contributions to the reductive dechlorination of cis-DCE. Application of ICB could effectively result in increased populations of Dhc and RDase genes, which corresponded with improved dechlorination of cis-DCE and vinyl chloride. Introduction of ICB and SPRS could be applied as a potential in situ remedial option to enhance anaerobic dechlorination efficiencies of chlorinated ethenes.

3.
Environ Res ; 187: 109629, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32460090

RESUMO

Trichloroethylene (TCE) is a frequently found organic contaminant in polluted-groundwater. In this microcosm study, effects of hydrogen-producing bacteria [Clostridium butyricum (Clostridium sp.)] and inhibitor of sulfate-reducing bacteria (SRB) addition on the enhancement of TCE dechlorination were evaluated. Results indicate that Clostridium sp. supplement could effectively enhance TCE reductive dechlorination (97.4% of TCE removal) due to increased hydrogen concentration and Dehalococcoides (DHC) populations (increased to 1 × 104 gene copies/L). However, addition of Clostridium sp. also caused the increase in dsrA (dissimilatory sulfide reductase subunit A) (increased to 2 × 108 gene copies/L), and thus, part of the hydrogen was consumed by SRB, which would limit the effective application of hydrogen by DHC. Control of Clostridium sp. addition is a necessity to minimize the adverse impact of Clostridium sp. on DHC growth. Ferric citrate caused the slight raise of the oxidation-reduction state, which resulted in growth inhibition of SRB. Molybdate addition inhibited the growth of SRB, and thus, the dsrA concentrations (dropped from 4 × 107 to 9 × 105 gene copies/L) and sulfate reduction efficiency were decreased. Increased DHC populations (increased from 8 × 103 to 1 × 105 gene copies/L) were due to increased available hydrogen (increased from 0 to 2 mg/L), which enhanced TCE dechlorination (99.3% TCE removal). Metagenomic analyses show that a significant microbial diversity was detected in microcosms with different treatments. Clostridium sp., ferric citrate, and molybdate addition caused a decreased SRB communities and increased fatty acid production microbial communities (increased from 4.9% to 20.2%), which would be beneficial to the hydrogen production and TCE dechlorination processes.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Bactérias , Biodegradação Ambiental , Sulfatos , Poluentes Químicos da Água/análise
4.
Environ Res ; 184: 109296, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32146214

RESUMO

Hexavalent chromium (Cr6+) is a commonly found heavy metal at polluted groundwater sites. In this study, the effectiveness of Cr6+ bioreduction by the chromium-reducing bacteria was evaluated to remediate Cr6+-contaminated groundwater. Microcosms were constructed using indigenous microbial consortia from a Cr6+-contaminated aquifer as the inocula, and slow-releasing emulsified polycolloid-substrate (ES), cane molasses (CM), and nutrient broth (NB) as the primary substrates. The genes responsible for the bioreduction of Cr6+ and variations in bacterial diversity were evaluated using metagenomics assay. Complete Cr6+ reduction via the biological mechanism was observed within 80 days using CM as the carbon source under anaerobic processes with the increased trivalent chromium (Cr3+) concentrations. Cr6+ removal efficiencies were 83% and 59% in microcosms using ES and NB as the substrates, respectively. Increased bacterial communities associated with Cr6+ bioreduction was observed in microcosms treated with CM and ES. Decreased bacterial communities were observed in NB microcosms. Compared to ES, CM was more applicable by indigenous Cr6+ reduction bacteria and resulted in effective Cr6+ bioreduction, which was possibly due to the growth of Cr6+-reduction related bacteria including Sporolactobacillus, Clostridium, and Ensifer. While NB was applied for specific bacterial selection, it might not be appropriate for electron donor application. These results revealed that substrate addition had significant impact on microbial diversities, which affected Cr6+ bioreduction processes. Results are useful for designing a green and sustainable bioreduction system for Cr6+-polluted groundwater remediation.


Assuntos
Cromo , Água Subterrânea , Biodegradação Ambiental , Cromo/análise , Cromo/metabolismo , Oxirredução
5.
Opt Express ; 25(25): 31595-31611, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245832

RESUMO

This study numerically investigates the enhancement of photonic microwave generation using an optically injected semiconductor laser operating at period-one (P1) nonlinear dynamics through ultrashort optical feedback. For the purpose of practical applications where system miniaturization is generally preferred, a feedback delay time that is one to two orders of magnitude shorter than the relaxation resonance period of a typical laser is emphasized. Various dynamical states that are more complicated than the P1 dynamics can be excited under a number of ultrashort optical feedback conditions. Within the range of the P1 dynamics, on one hand, the frequency of the P1 microwave oscillation can be greatly enhanced by up to more than three folds. Generally speaking, the microwave frequency enhances with the optical feedback power and phase, while it varies saw-wise with the optical feedback delay time. On the other hand, the purity of the P1 microwave oscillation can be highly improved by up to more than three orders of magnitude. In general, the microwave purity improves with the optical feedback power and delay time, while it only varies within an order of magnitude with the optical feedback phase. These results suggest that the ultrashort optical feedback provides the optically injected laser system with an extra degree of freedom to manipulate/improve the characteristics of the P1 microwave oscillation without changing the optical injection condition.

6.
Opt Express ; 22(15): 18648-61, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089483

RESUMO

Effects of optical feedback on period-one nonlinear dynamics of an optically injected semiconductor laser are numerically investigated. The optical feedback can suppress the period-one dynamics and excite other more complex dynamics if the feedback level is high except for extremely short feedback delay times. Within the range of the period-one dynamics, however, the optical feedback can stabilize the period-one dynamics in such a manner that significant reduction of microwave linewidth and phase noise is achieved, up to more than two orders of magnitude. A high feedback level and/or a long feedback delay time are generally preferred for such microwave stabilization. However, considerably enhanced microwave linewidth and phase noise happen periodically at certain feedback delay times, which is strongly related to the behavior of locking between the period-one microwave oscillation and the feedback loop modes. The extent of these enhancements reduces if the feedback level is high. While the microwave frequency only slightly changes with the feedback level, it red-shifts with the feedback delay time before an abrupt blue-shift occurs periodically. With the presence of the laser intrinsic noise, frequency jitters occur around the feedback delay times leading to the abrupt blue-shifts, ranging from the order of 0.1 GHz to the order of 1 GHz.

7.
Sci Total Environ ; 920: 170885, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342459

RESUMO

Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 µmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 µmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 µmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.


Assuntos
Chloroflexi , Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias
8.
Environ Pollut ; 348: 123768, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493868

RESUMO

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/metabolismo , Biodegradação Ambiental , Carbono , Poluentes Químicos da Água/análise , Água Subterrânea/química , Hidrogênio , Concentração de Íons de Hidrogênio
9.
Chemosphere ; 238: 124596, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524629

RESUMO

Deteriorated environmental conditions during the bioremediation of trichloroethene (TCE)-polluted groundwater cause decreased treatment efficiencies. This study assessed the effect of applying immobilized Clostridium butyricum (a hydrogen-producing bacterium) in silica gel on enhancing the reductive dechlorination efficiency of TCE with the slow polycolloid-releasing substrate (SPRS) supplement in groundwater. The responses of microbial communities with the immobilized system (immobilized Clostridium butyricum and SPRS amendments) were also characterized by the metagenomics assay. A complete TCE removal in microcosms was obtained within 30 days with the application of this immobilized system via reductive dechlorination processes. An increase in the population of Dehalococcoides spp. was observed using the quantitative polymerase chain reaction (qPCR) analysis. Results of metagenomics assay reveal that the microbial communities in the immobilized system were distinct from those in systems with SPRS only. Bacterial communities associated with TCE biodegradation also increased in microcosms treated with the immobilized system. The immobilized system shows a great potential to promote the TCE dechlorination efficiency, and the metagenomics-based approach provides detailed insights into dechlorinating microbial community dynamics. The results would be helpful in designing an in situ immobilized system to enhance the bioremediation efficiency of TCE-contaminated groundwater.


Assuntos
Chloroflexi/metabolismo , Clostridium butyricum/metabolismo , Água Subterrânea/química , Tricloroetileno/metabolismo , Biodegradação Ambiental , Chloroflexi/crescimento & desenvolvimento , Halogenação , Metagenômica , Microbiota/fisiologia , Sílica Gel
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa