RESUMO
This work presents a comprehensive study exploring the thermodynamics of the solid phase of a series of phenylimidazoles, encompassing experimental measurements of heat capacity, volatility, and thermal behavior. The influence of successive phenyl group insertions on the imidazole ring on thermodynamic properties and supramolecular behavior was thoroughly examined through the evaluation of 2-phenylimidazole (2-PhI), 4-phenylimidazole (4-PhI), 4,5-diphenylimidazole (4,5-DPhI), and 2,4,5-triphenylimidazole (2,4,5-TPhI). Structural correlations between molecular structure and thermodynamic properties were established. Furthermore, the investigation employed UV-vis spectroscopy and quantum chemical calculations. Additive effects arising from the introduction of phenyl groups were found through the analysis of the solid-liquid and solid-gas equilibria, as well as heat capacities. A good correlation emerged between the thermodynamic properties of sublimation and the molar volume of the unit cell, evident across 2-PhI, 4,5-DPhI, and 2,4,5-TPhI. In contrast to its isomer 2-PhI, 4-PhI exhibited greater cohesive energy due to the stronger N-H···N intermolecular interactions, leading to the disruption of coplanar geometry in the 4-PhI molecules. The observed higher entropies of phase transition (fusion and sublimation) are consistent with the higher structural order observed in the crystalline lattice of 4-PhI.
RESUMO
The solid-liquid phase behaviour of two tertiary alcohols, perfluoro-tert-butanol and tert-butanol, was studied here using experimental (ITC, DSC and density measurements) and theoretical (MD simulations) approaches. The phase diagram of the binary mixture reveals highly negative deviations from ideality at low concentrations, as well as the formation of co-crystals and is characterized by two eutectic points, a congruent melting point and a peritectic reaction corresponding to TBH : TBF stoichiometries of 2 : 1 and 1 : 1 respectively. Excess molar enthalpies and volumes were calculated, showing negative and positive deviations from ideality, respectively. The effect of acidity, stereochemical hindrance and phobic effects and how they affect intermolecular interactions in these binary mixtures is discussed, with the aim of designing and fine-tuning type V deep eutectic solvents. The results showed that the fluorination of tertiary alcohols can be used for the tuning of the mixing properties and solid-liquid phase diagrams.
RESUMO
The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.
RESUMO
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.
RESUMO
A series of pyridyl analogues of rosamines was prepared by employing two methodologies: (i)â the conventional-heating condensation of a pyridinecarboxaldehyde with 3-(diethylamino)phenol in propionic acid, and (ii)â the novel ohmic-heating assisted condensation under "on water" conditions, followed by oxidation. The 4-pyridyl substituted rosamine was further converted into the N-methylpyridinium derivative through N-alkylation using methyl iodide. The influence of the position and cationization of the nitrogen atom of the pyridyl ring in the physicochemical properties of fluorophores was investigated by 1 H, 13 C, 15 Nâ NMR spectral analysis, UV/Vis and fluorescence spectroscopy, single-crystal X-ray diffraction (4-pyridyl and N-methylpyridinium derivatives) and thermal-behavior analysis. Curiously, for ethanolic solutions of 4-pyridyl and N-methylpyridinium derivatives an extinction of color and fluorescence over time was observed. This phenomenon was further studied and the data revealed that it is the result of nucleophilic addition of ethoxide ion to the central 9-position of the xanthene. The kinetics of the process is slower for the 4-pyridyl rosamine, which emphasizes the importance of the charge in the N-methylpyridinium analogue in the reactivity of the molecule towards a nucleophile agent. This phenomenon is reversible, meaning that the compounds can be rapidly recovered by decreasing the pH, opening new avenues in the sensing applications of this class of rosamines.
RESUMO
Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03-6.0â mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC50 values obtained (0.3-2.7â mg L-1 ), the surface-active compounds tested should be considered "toxic" or "highly toxic". Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents.
Assuntos
Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Líquidos Iônicos/síntese química , Líquidos Iônicos/farmacologia , Compostos de Amônio/química , Escherichia coli/citologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Imidazóis/química , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Compostos Organofosforados/química , Propriedades de SuperfícieRESUMO
This work studies the formation of deep eutectic solvents formed by one active pharmaceutical ingredient (quinine, pyrimethamine, or 2-phenylimidazopyridine) and a second component potentially acting as an excipient (betaine, choline chloride, tetramethylammonium chloride, thymol, menthol, gallic acid, vanillin, acetovanillone, 4-hydroxybenzaldehyde, syringaldehyde, propyl gallate, propylparaben, or butylated hydroxyanisole), aiming to address challenges regarding drug solubility, bioavailability, and permeability. A preliminary screening was carried out using the thermodynamic model COSMO-RS, narrowing down the search to three promising excipients (thymol, propyl gallate, and butylated hydroxyanisole). Nine solid-liquid equilibrium (SLE) phase diagrams were experimentally measured combining the three model drugs with the screened excipients, and using a combination of a visual melting method and differential scanning calorimetry. Negative deviations from thermodynamic ideality were observed in all nine systems. Furthermore, a total of four new cocrystals were found, with powder and single crystal X-ray diffraction techniques being employed to verify their unique diffraction patterns. In the thermodynamic modelling of the SLE diagrams, two COSMO-RS parametrizations (TZVP and TZVPD-FINE) were also applied, though neither consistently delivered a better description over the other.
Assuntos
Antimaláricos , Solventes Eutéticos Profundos , Excipientes , Solubilidade , Antimaláricos/química , Excipientes/química , Solventes Eutéticos Profundos/química , Varredura Diferencial de Calorimetria/métodos , Termodinâmica , Química Farmacêutica/métodos , Difração de Raios X/métodos , Cristalização , Solventes/químicaRESUMO
The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 J·K-1·mol-1 in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.
RESUMO
Chlorins are highly interesting compounds due to their spectroscopic properties in both UV-Vis and NIR regions. Upon coordination to a metal ion, the corresponding metallochlorins exhibit more valuable physicochemical properties that enable a broader range of applications, such as in photodynamic therapy (PDT), water splitting catalysis, optical sensor devices and dye-sensitized solar cells. Synthetic chemistry has been in a continuous quest to fulfil most green chemistry requirements through the development of efficient reactions. Being a heating process that does not depend on heat transfer to the reaction medium, ohmic heating accomplishes the mentioned requirements and allows a fast and uniform heating regime thanks to the ionic conductivity of the reaction medium. Herein, we report the metallation of pyrrolidine- and isoxazolidine-fused chlorins with Zn(II), Cu(II) and Pd(II) salts by ohmic heating, using non-toxic aqueous solutions, and their corresponding physico-chemical characterization. All pyrrolidine-fused chlorins showed higher yields, when compared with isoxazolidine ones. From the thermogravimetric analysis performed it is possible to infer that the metal enhances the steadiness of the macrocycle, making it easier to cause the thermal decomposition of the pyrrolidine- and isoxazolidine-fused chlorins. The Zn(II) complexes showed high absorption in the NIR spectral region, a low fluorescence quantum yield and a short excited singlet state, which indicate the high efficiency of intersystem crossing to the triplet state, making them very promising candidates as photosensitizers for PDT.
RESUMO
Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.15 K, of 3- and 4-phenoxyphenol were derived from their energies of combustion in oxygen, measured by a static bomb calorimeter, and from the enthalpies of vaporization or sublimation derived respectively by Calvet microcalorimetry for the 3-phenoxyphenol and by Knudsen effusion technique for the 4-phenoxyphenol. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies, and, finally, O−H bond dissociation enthalpies. The good agreement between the G3MP2B3-derived values and the experimental gas-phase enthalpies of formation for the 3- and 4-phenoxyphenol gives confidence to the estimate concerning the 2-phenoxyphenol isomer, which was not experimentally studied, and to the estimates concerning the radical and the anion. Additionally, the experimental values of gas-phase enthalpies of formation were also compared with estimates based on the empirical scheme developed by Cox.
RESUMO
Due to the close relation between oxidative stress and a plethora of inflammatory diseases, antioxidants have received an increased attention for incorporation into dermatological products. Their use and absorption is however limited by their low solubility in water-rich formulations. Herein, a set of novel cholinium-based salts, namely dicholinium ellagate and cholinium caffeate, syringate, vanillate, gallate and salicylate were synthetized and characterized. Their melting and decomposition temperatures, water solubility, and toxicological, antioxidant, cytotoxicity and pro-/anti-inflammatory activities were addressed. These new salts, exclusively composed of ions derived from natural sources, display a high thermal stability - up to 150 ºC. The synthesized compounds are significantly more soluble in water (in average, 3 orders of magnitude higher) than the corresponding phenolic acids. Furthermore, they present not only similar but even higher antioxidant and anti-inflammatory activities, as well as comparable cytotoxicity and lower ecotoxicity profiles than their acidic precursors. Amongst all the investigated salts, dicholinium ellagate is the most promising synthesized salt when considering the respective antioxidant and anti-inflammatory activities. Since all the synthesized salts are based on the cholinium cation, they can further be envisaged as essential nutrients to be used in oral drugs.
RESUMO
A systematic molecular dynamics study using large simulation boxes has been performed in order to extend the analysis of the mesoscopic segregation behavior observed in ionic liquids of the 1,3-dialkyl-imidazolium bis(trifluoromethylsulfonyl)imide homologous series, [C(n)C(mim)][Ntf2] (2 ≤ n ≤ 10, 2 ≤ m ≤ n). The analyses include the discussion of the structure factors, S(q), in the low-q range (1.6 ≤ q/nm(-1) ≤ 20); the confirmation of the periodicity of the polar network of the ionic liquid and its relation to the so-called intermediate peaks; and the characterization of the polar network and the nonpolar regions that are formed along the series using aggregate analyses by means of five different statistical tools. The analyses confirmed that the percolation of the nonpolar regions into a continuous domain occurs when the total number of carbon atoms in the alkyl chains exceeds six but that this is not a sufficient condition for the emergence of a distinct and intense prepeak. The existence of such a peak also requires that the longer alkyl chain contains more than a critical alkyl length (CAL) of five carbon atoms.
RESUMO
The present work reports the thermodynamic study performed on three monofluorinated nitrobenzene derivatives by a combination of experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the liquid phase of the three isomers of fluoronitrobenzene were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapor pressure study of the referred compounds was done by a static method and, from the obtained results, the phase diagrams were elaborated, and the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation and fusion, at T = 298.15 K, were determined. The combination of some of the referred thermodynamic parameters yielded the standard (p degrees = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of the studied compounds: Delta(f)H(m)(o) (2-fluoronitrobenzene, g) = -(102.4 +/- 1.5) kJ x mol(-1), Delta(f)H(m)(o) (3-fluoronitrobenzene, g) = -(128.0 +/- 1.7) kJ x mol(-1), and Delta(f)H(m)(o) (4-fluoronitrobenzene, g) = -(133.9 +/- 1.4) kJ x mol(-1). Using the empirical scheme developed by Cox, values of standard molar enthalpies of formation in the gaseous phase were estimated and afterwards compared with the ones obtained experimentally, and both were interpreted in terms of the molecular structure of the compounds. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. The computed values compare very well with the experimental results obtained in this work and show that 4-fluoronitrobenzene is the most stable isomer from the thermodynamic point of view. Furthermore, this composite approach was also used to obtain information about the gas-phase basicities, proton and electron affinities and, finally, adiabatic ionization enthalpies.
RESUMO
This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⻹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⻹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⻹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.