Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 262: 108789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762201

RESUMO

Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.


Assuntos
Crithidia , Animais , Crithidia/genética , Abelhas/parasitologia , Transgenes , Interações Hospedeiro-Parasita , Mitocôndrias/genética , Proteínas de Fluorescência Verde/genética , Núcleo Celular/genética , Microscopia Confocal
2.
Nat Mater ; 16(3): 363-369, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27869824

RESUMO

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa