Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Physiol ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185911

RESUMO

The human heart is subject to highly variable amounts of strain during day-to-day activities and needs to adapt to a wide range of physiological demands. This adaptation is driven by an autoregulatory loop that includes both electrical and the mechanical components. In particular, mechanical forces are known to feed back into the cardiac electrophysiology system, which can result in pro- and anti-arrhythmic effects. Despite the widespread use of computational modelling and simulation for cardiac electrophysiology research, the majority of in silico experiments ignore this mechano-electric feedback entirely due to the high computational cost associated with solving cardiac mechanics. In this study, we therefore use an electromechanically coupled whole-heart model to investigate the differential and combined effects of electromechanical feedback mechanisms with a focus on their physiological relevance during sinus rhythm. In particular, we consider troponin-bound calcium, the effect of deformation on the tissue diffusion tensor, and stretch-activated channels. We found that activation of the myocardium was only significantly affected when including deformation into the diffusion term of the monodomain equation. Repolarization, on the other hand, was influenced by both troponin-bound calcium and stretch-activated channels and resulted in steeper repolarization gradients in the atria. The latter also caused afterdepolarizations in the atria. Due to its central role for tension development, calcium bound to troponin affected stroke volume and pressure. In conclusion, we found that mechano-electric feedback changes activation and repolarization patterns throughout the heart during sinus rhythm and lead to a markedly more heterogeneous electrophysiological substrate. KEY POINTS: The electrophysiological and mechanical function of the heart are tightly interrelated by excitation-contraction coupling (ECC) in the forward direction and mechano-electric feedback (MEF) in the reverse direction. While ECC is considered in many state-of-the-art computational models of cardiac electromechanics, less is known about the effect of different MEF mechanisms. Accounting for calcium bound to troponin increases stroke volume and delays repolarization. Geometry-mediated MEF leads to more heterogeneous activation and repolarization with steeper gradients. Both effects combine in an additive way. Non-selective stretch-activated channels as an additional MEF mechanism lead to heterogeneous diastolic transmembrane voltage, higher developed tension and delayed repolarization or afterdepolarizations in highly stretched parts of the atria. The differential and combined effects of these three MEF mechanisms during sinus rhythm activation in a human four-chamber heart model may have implications for arrhythmogenesis, both in terms of substrate (repolarization gradients) and triggers (ectopy).

2.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38870348

RESUMO

AIMS: Patients with persistent atrial fibrillation (AF) experience 50% recurrence despite pulmonary vein isolation (PVI), and no consensus is established for secondary treatments. The aim of our i-STRATIFICATION study is to provide evidence for stratifying patients with AF recurrence after PVI to optimal pharmacological and ablation therapies, through in silico trials. METHODS AND RESULTS: A cohort of 800 virtual patients, with variability in atrial anatomy, electrophysiology, and tissue structure (low-voltage areas, LVAs), was developed and validated against clinical data from ionic currents to electrocardiogram. Virtual patients presenting AF post-PVI underwent 12 secondary treatments. Sustained AF developed in 522 virtual patients after PVI. Second ablation procedures involving left atrial ablation alone showed 55% efficacy, only succeeding in the small right atria (<60 mL). When additional cavo-tricuspid isthmus ablation was considered, Marshall-PLAN sufficed (66% efficacy) for the small left atria (<90 mL). For the bigger left atria, a more aggressive ablation approach was required, such as anterior mitral line (75% efficacy) or posterior wall isolation plus mitral isthmus ablation (77% efficacy). Virtual patients with LVAs greatly benefited from LVA ablation in the left and right atria (100% efficacy). Conversely, in the absence of LVAs, synergistic ablation and pharmacotherapy could terminate AF. In the absence of ablation, the patient's ionic current substrate modulated the response to antiarrhythmic drugs, being the inward currents critical for optimal stratification to amiodarone or vernakalant. CONCLUSION: In silico trials identify optimal strategies for AF treatment based on virtual patient characteristics, evidencing the power of human modelling and simulation as a clinical assisting tool.


Assuntos
Antiarrítmicos , Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Recidiva , Fibrilação Atrial/cirurgia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Humanos , Ablação por Cateter/métodos , Veias Pulmonares/cirurgia , Veias Pulmonares/fisiopatologia , Antiarrítmicos/uso terapêutico , Resultado do Tratamento , Modelos Cardiovasculares , Simulação por Computador , Potenciais de Ação , Medição de Risco , Átrios do Coração/fisiopatologia , Átrios do Coração/cirurgia , Masculino , Anisóis/uso terapêutico , Seleção de Pacientes , Feminino , Modelagem Computacional Específica para o Paciente , Pessoa de Meia-Idade , Pirrolidinas/uso terapêutico , Eletrocardiografia , Tomada de Decisão Clínica
3.
J Cardiovasc Electrophysiol ; 34(8): 1613-1621, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365931

RESUMO

INTRODUCTION: Improved sinus rhythm (SR) maintenance rates have been achieved in patients with persistent atrial fibrillation (AF) undergoing pulmonary vein isolation plus additional ablation of low voltage substrate (LVS) during SR. However, voltage mapping during SR may be hindered in persistent and long-persistent AF patients by immediate AF recurrence after electrical cardioversion. We assess correlations between LVS extent and location during SR and AF, aiming to identify regional voltage thresholds for rhythm-independent delineation/detection of LVS areas. (1) Identification of voltage dissimilarities between mapping in SR and AF. (2) Identification of regional voltage thresholds that improve cross-rhythm substrate detection. (3) Comparison of LVS between SR and native versus induced AF. METHODS: Forty-one ablation-naive persistent AF patients underwent high-definition (1 mm electrodes; >1200 left atrial (LA) mapping sites per rhythm) voltage mapping in SR and AF. Global and regional voltage thresholds in AF were identified which best match LVS < 0.5 mV and <1.0 mV in SR. Additionally, the correlation between SR-LVS with induced versus native AF-LVS was assessed. RESULTS: Substantial voltage differences (median: 0.52, interquartile range: 0.33-0.69, maximum: 1.19 mV) with a predominance of the posterior/inferior LA wall exist between the rhythms. An AF threshold of 0.34 mV for the entire left atrium provides an accuracy, sensitivity and specificity of 69%, 67%, and 69% to identify SR-LVS < 0.5 mV, respectively. Lower thresholds for the posterior wall (0.27 mV) and inferior wall (0.3 mV) result in higher spatial concordance to SR-LVS (4% and 7% increase). Concordance with SR-LVS was higher for induced AF compared to native AF (area under the curve[AUC]: 0.80 vs. 0.73). AF-LVS < 0.5 mV corresponds to SR-LVS < 0.97 mV (AUC: 0.73). CONCLUSION: Although the proposed region-specific voltage thresholds during AF improve the consistency of LVS identification as determined during SR, the concordance in LVS between SR and AF remains moderate, with larger LVS detection during AF. Voltage-based substrate ablation should preferentially be performed during SR to limit the amount of ablated atrial myocardium.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/cirurgia
4.
Europace ; 25(1): 211-222, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35943361

RESUMO

AIMS: The long-term success rate of ablation therapy is still sub-optimal in patients with persistent atrial fibrillation (AF), mostly due to arrhythmia recurrence originating from arrhythmogenic sites outside the pulmonary veins. Computational modelling provides a framework to integrate and augment clinical data, potentially enabling the patient-specific identification of AF mechanisms and of the optimal ablation sites. We developed a technology to tailor ablations in anatomical and functional digital atrial twins of patients with persistent AF aiming to identify the most successful ablation strategy. METHODS AND RESULTS: Twenty-nine patient-specific computational models integrating clinical information from tomographic imaging and electro-anatomical activation time and voltage maps were generated. Areas sustaining AF were identified by a personalized induction protocol at multiple locations. State-of-the-art anatomical and substrate ablation strategies were compared with our proposed Personalized Ablation Lines (PersonAL) plan, which consists of iteratively targeting emergent high dominant frequency (HDF) regions, to identify the optimal ablation strategy. Localized ablations were connected to the closest non-conductive barrier to prevent recurrence of AF or atrial tachycardia. The first application of the HDF strategy had a success of >98% and isolated only 5-6% of the left atrial myocardium. In contrast, conventional ablation strategies targeting anatomical or structural substrate resulted in isolation of up to 20% of left atrial myocardium. After a second iteration of the HDF strategy, no further arrhythmia episode could be induced in any of the patient-specific models. CONCLUSION: The novel PersonAL in silico technology allows to unveil all AF-perpetuating areas and personalize ablation by leveraging atrial digital twins.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Taquicardia Supraventricular , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Resultado do Tratamento , Átrios do Coração/cirurgia , Simulação por Computador , Veias Pulmonares/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Recidiva
5.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713626

RESUMO

AIMS: Electro-anatomical voltage, conduction velocity (CV) mapping, and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) have been correlated with atrial cardiomyopathy (ACM). However, the comparability between these modalities remains unclear. This study aims to (i) compare pathological substrate extent and location between current modalities, (ii) establish spatial histograms in a cohort, (iii) develop a new estimated optimized image intensity threshold (EOIIT) for LGE-MRI identifying patients with ACM, (iv) predict rhythm outcome after pulmonary vein isolation (PVI) for persistent atrial fibrillation (AF). METHODS AND RESULTS: Thirty-six ablation-naive persistent AF patients underwent LGE-MRI and high-definition electro-anatomical mapping in sinus rhythm. Late gadolinium enhancement areas were classified using the UTAH, image intensity ratio (IIR >1.20), and new EOIIT method for comparison to low-voltage substrate (LVS) and slow conduction areas <0.2 m/s. Receiver operating characteristic analysis was used to determine LGE thresholds optimally matching LVS. Atrial cardiomyopathy was defined as LVS extent ≥5% of the left atrium (LA) surface at <0.5 mV. The degree and distribution of detected pathological substrate (percentage of individual LA surface are) varied significantly (P < 0.001) across the mapping modalities: 10% (interquartile range 0-14%) of the LA displayed LVS <0.5 mV vs. 7% (0-12%) slow conduction areas <0.2 m/s vs. 15% (8-23%) LGE with the UTAH method vs. 13% (2-23%) using IIR >1.20, with most discrepancies on the posterior LA. Optimized image intensity thresholds and each patient's mean blood pool intensity correlated linearly (R2 = 0.89, P < 0.001). Concordance between LGE-MRI-based and LVS-based ACM diagnosis improved with the novel EOIIT applied at the anterior LA [83% sensitivity, 79% specificity, area under the curve (AUC): 0.89] in comparison to the UTAH method (67% sensitivity, 75% specificity, AUC: 0.81) and IIR >1.20 (75% sensitivity, 62% specificity, AUC: 0.67). CONCLUSION: Discordances in detected pathological substrate exist between LVS, CV, and LGE-MRI in the LA, irrespective of the LGE detection method. The new EOIIT method improves concordance of LGE-MRI-based ACM diagnosis with LVS in ablation-naive AF patients but discrepancy remains particularly on the posterior wall. All methods may enable the prediction of rhythm outcomes after PVI in patients with persistent AF.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Meios de Contraste , Gadolínio , Estudos de Coortes , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Átrios do Coração/patologia , Imageamento por Ressonância Magnética/métodos , Cardiomiopatias/etiologia , Ablação por Cateter/efeitos adversos
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674868

RESUMO

The KCNQ1 gene encodes the α-subunit of the cardiac voltage-gated potassium (Kv) channel KCNQ1, also denoted as Kv7.1 or KvLQT1. The channel assembles with the ß-subunit KCNE1, also known as minK, to generate the slowly activating cardiac delayed rectifier current IKs, a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function variants in KCNQ1 cause the congenital Long QT1 (LQT1) syndrome, characterized by delayed cardiac repolarization and a QT interval prolongation in the surface electrocardiogram (ECG). Autosomal dominant loss-of-function variants in KCNQ1 result in the LQT syndrome called Romano-Ward syndrome (RWS), while autosomal recessive variants affecting function, lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. The aim of this study was the characterization of novel KCNQ1 variants identified in patients with RWS to widen the spectrum of known LQT1 variants, and improve the interpretation of the clinical relevance of variants in the KCNQ1 gene. We functionally characterized nine human KCNQ1 variants using the voltage-clamp technique in Xenopus laevis oocytes, from which we report seven novel variants. The functional data was taken as input to model surface ECGs, to subsequently compare the functional changes with the clinically observed QTc times, allowing a further interpretation of the severity of the different LQTS variants. We found that the electrophysiological properties of the variants correlate with the severity of the clinically diagnosed phenotype in most cases, however, not in all. Electrophysiological studies combined with in silico modelling approaches are valuable components for the interpretation of the pathogenicity of KCNQ1 variants, but assessing the clinical severity demands the consideration of other factors that are included, for example in the Schwartz score.


Assuntos
Síndrome de Jervell-Lange Nielsen , Síndrome de Romano-Ward , Humanos , Síndrome de Romano-Ward/genética , Canal de Potássio KCNQ1/genética , Síndrome de Jervell-Lange Nielsen/genética , Fenótipo , Eletrocardiografia , Mutação , Canais de Potássio KCNQ/genética
7.
Biophys J ; 121(22): 4247-4259, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36262044

RESUMO

The sinoatrial node (SAN) is a complex structure that spontaneously depolarizes rhythmically ("pacing") and excites the surrounding non-automatic cardiac cells ("drive") to initiate each heart beat. However, the mechanisms by which the SAN cells can activate the large and hyperpolarized surrounding cardiac tissue are incompletely understood. Experimental studies demonstrated the presence of an insulating border that separates the SAN from the hyperpolarizing influence of the surrounding myocardium, except at a discrete number of sinoatrial exit pathways (SEPs). We propose a highly detailed 3D model of the human SAN, including 3D SEPs to study the requirements for successful electrical activation of the primary pacemaking structure of the human heart. A total of 788 simulations investigate the ability of the SAN to pace and drive with different heterogeneous characteristics of the nodal tissue (gradient and mosaic models) and myocyte orientation. A sigmoidal distribution of the tissue conductivity combined with a mosaic model of SAN and atrial cells in the SEP was able to drive the right atrium (RA) at varying rates induced by gradual If block. Additionally, we investigated the influence of the SEPs by varying their number, length, and width. SEPs created a transition zone of transmembrane voltage and ionic currents to enable successful pace and drive. Unsuccessful simulations showed a hyperpolarized transmembrane voltage (-66 mV), which blocked the L-type channels and attenuated the sodium-calcium exchanger. The fiber direction influenced the SEPs that preferentially activated the crista terminalis (CT). The location of the leading pacemaker site (LPS) shifted toward the SEP-free areas. LPSs were located closer to the SEP-free areas (3.46 ± 1.42 mm), where the hyperpolarizing influence of the CT was reduced, compared with a larger distance from the LPS to the areas where SEPs were located (7.17± 0.98 mm). This study identified the geometrical and electrophysiological aspects of the 3D SAN-SEP-CT structure required for successful pace and drive in silico.


Assuntos
Lipopolissacarídeos , Nó Sinoatrial , Humanos , Lipopolissacarídeos/metabolismo , Potenciais de Ação/fisiologia , Átrios do Coração , Trocador de Sódio e Cálcio/metabolismo
8.
Europace ; 24(7): 1186-1194, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35045172

RESUMO

AIMS: Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients-three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. CONCLUSION: Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.


Assuntos
Flutter Atrial , Ablação por Cateter , Flutter Atrial/diagnóstico , Flutter Atrial/etiologia , Flutter Atrial/cirurgia , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Humanos , Aprendizado de Máquina
9.
Europace ; 23(23 Suppl 1): i133-i142, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751084

RESUMO

AIMS: The treatment of atrial fibrillation beyond pulmonary vein isolation has remained an unsolved challenge. Targeting regions identified by different substrate mapping approaches for ablation resulted in ambiguous outcomes. With the effective refractory period being a fundamental prerequisite for the maintenance of fibrillatory conduction, this study aims at estimating the effective refractory period with clinically available measurements. METHODS AND RESULTS: A set of 240 simulations in a spherical model of the left atrium with varying model initialization, combination of cellular refractory properties, and size of a region of lowered effective refractory period was implemented to analyse the capabilities and limitations of cycle length mapping. The minimum observed cycle length and the 25% quantile were compared to the underlying effective refractory period. The density of phase singularities was used as a measure for the complexity of the excitation pattern. Finally, we employed the method in a clinical test of concept including five patients. Areas of lowered effective refractory period could be distinguished from their surroundings in simulated scenarios with successfully induced multi-wavelet re-entry. Larger areas and higher gradients in effective refractory period as well as complex activation patterns favour the method. The 25% quantile of cycle lengths in patients with persistent atrial fibrillation was found to range from 85 to 190 ms. CONCLUSION: Cycle length mapping is capable of highlighting regions of pathologic refractory properties. In combination with complementary substrate mapping approaches, the method fosters confidence to enhance the treatment of atrial fibrillation beyond pulmonary vein isolation particularly in patients with complex activation patterns.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Simulação por Computador , Átrios do Coração , Frequência Cardíaca , Humanos , Veias Pulmonares/cirurgia
10.
Europace ; 23(12): 2010-2019, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34463710

RESUMO

AIMS: Atrial cardiomyopathy (ACM) is associated with new-onset atrial fibrillation, arrhythmia recurrence after pulmonary vein isolation (PVI) and increased risk for stroke. At present, diagnosis of ACM is feasible by endocardial contact mapping of left atrial (LA) low-voltage substrate (LVS) or late gadolinium-enhanced magnetic resonance imaging, but their complexity limits a widespread use. The aim of this study was to assess non-invasive body surface electrocardiographic imaging (ECGI) as a novel clinical tool for diagnosis of ACM compared with endocardial mapping. METHODS AND RESULTS: Thirty-nine consecutive patients (66 ± 9 years, 85% male) presenting for their first PVI for persistent atrial fibrillation underwent ECGI in sinus rhythm using a 252-electrode-array mapping system. Subsequently, high-density LA voltage and biatrial activation maps (mean 2090 ± 488 sites) were acquired in sinus rhythm prior to PVI. Freedom from arrhythmia recurrence was assessed within 12 months follow-up. Increased duration of total atrial conduction time (TACT) in ECGI was associated with both increased atrial activation time and extent of LA-LVS in endocardial contact mapping (r = 0.77 and r = 0.66, P < 0.0001 respectively). Atrial cardiomyopathy was found in 23 (59%) patients. A TACT value of 148 ms identified ACM with 91.3% sensitivity and 93.7% specificity. Arrhythmia recurrence occurred in 15 (38%) patients during a follow-up of 389 ± 55 days. Freedom from arrhythmia was significantly higher in patients with a TACT <148 ms compared with patients with a TACT ≥148 ms (82.4% vs. 45.5%, P = 0.019). CONCLUSION: Analysis of TACT in non-invasive ECGI allows diagnosis of patients with ACM, which is associated with a significantly increased risk for arrhythmia recurrence following PVI.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Feminino , Humanos , Masculino , Veias Pulmonares/cirurgia , Recidiva , Resultado do Tratamento
11.
Biomed Eng Online ; 20(1): 69, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294108

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is typically caused by mutations in sarcomeric genes leading to cardiomyocyte disarray, replacement fibrosis, impaired contractility, and elevated filling pressures. These varying tissue properties are associated with certain strain patterns that may allow to establish a diagnosis by means of non-invasive imaging without the necessity of harmful myocardial biopsies or contrast agent application. With a numerical study, we aim to answer: how the variability in each of these mechanisms contributes to altered mechanics of the left ventricle (LV) and if the deformation obtained in in-silico experiments is comparable to values reported from clinical measurements. METHODS: We conducted an in-silico sensitivity study on physiological and pathological mechanisms potentially underlying the clinical HCM phenotype. The deformation of the four-chamber heart models was simulated using a finite-element mechanical solver with a sliding boundary condition to mimic the tissue surrounding the heart. Furthermore, a closed-loop circulatory model delivered the pressure values acting on the endocardium. Deformation measures and mechanical behavior of the heart models were evaluated globally and regionally. RESULTS: Hypertrophy of the LV affected the course of strain, strain rate, and wall thickening-the root-mean-squared difference of the wall thickening between control (mean thickness 10 mm) and hypertrophic geometries (17 mm) was >10%. A reduction of active force development by 40% led to less overall deformation: maximal radial strain reduced from 26 to 21%. A fivefold increase in tissue stiffness caused a more homogeneous distribution of the strain values among 17 heart segments. Fiber disarray led to minor changes in the circumferential and radial strain. A combination of pathological mechanisms led to reduced and slower deformation of the LV and halved the longitudinal shortening of the LA. CONCLUSIONS: This study uses a computer model to determine the changes in LV deformation caused by pathological mechanisms that are presumed to underlay HCM. This knowledge can complement imaging-derived information to obtain a more accurate diagnosis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Ventrículos do Coração , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Meios de Contraste , Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos
12.
Biophys J ; 117(12): 2244-2254, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31570229

RESUMO

Each heartbeat is initiated by cyclic spontaneous depolarization of cardiomyocytes in the sinus node forming the primary natural pacemaker. In patients with end-stage renal disease undergoing hemodialysis, it was recently shown that the heart rate drops to very low values before they suffer from sudden cardiac death with an unexplained high incidence. We hypothesize that the electrolyte changes commonly occurring in these patients affect sinus node beating rate and could be responsible for severe bradycardia. To test this hypothesis, we extended the Fabbri et al. computational model of human sinus node cells to account for the dynamic intracellular balance of ion concentrations. Using this model, we systematically tested the effect of altered extracellular potassium, calcium, and sodium concentrations. Although sodium changes had negligible (0.15 bpm/mM) and potassium changes mild effects (8 bpm/mM), calcium changes markedly affected the beating rate (46 bpm/mM ionized calcium without autonomic control). This pronounced bradycardic effect of hypocalcemia was mediated primarily by ICaL attenuation due to reduced driving force, particularly during late depolarization. This, in turn, caused secondary reduction of calcium concentration in the intracellular compartments and subsequent attenuation of inward INaCa and reduction of intracellular sodium. Our in silico findings are complemented and substantiated by an empirical database study comprising 22,501 pairs of blood samples and in vivo heart rate measurements in hemodialysis patients and healthy individuals. A reduction of extracellular calcium was correlated with a decrease of heartrate by 9.9 bpm/mM total serum calcium (p < 0.001) with intact autonomic control in the cross-sectional population. In conclusion, we present mechanistic in silico and empirical in vivo data supporting the so far neglected but experimentally testable and potentially important mechanism of hypocalcemia-induced bradycardia and asystole, potentially responsible for the highly increased and so far unexplained risk of sudden cardiac death in the hemodialysis patient population.


Assuntos
Relógios Biológicos , Hipocalcemia/fisiopatologia , Nó Sinoatrial/fisiopatologia , Potenciais de Ação , Idoso , Simulação por Computador , Estudos Transversais , Diástole/fisiologia , Eletrólitos/sangue , Feminino , Frequência Cardíaca , Humanos , Hipocalcemia/sangue , Hipocalcemia/patologia , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Diálise Renal
13.
J Therm Biol ; 84: 316-322, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31466769

RESUMO

Local brain hypothermia is an attractive method for providing cerebral neuroprotection for ischemic stroke patients and at the same time reducing systemic side effects of cooling. In acute ischemic stroke patients with large vessel occlusion, combination with endovascular mechanical recanalization treatment could potentially allow for an alleviation of inflammatory and apoptotic pathways in the critical phase of reperfusion. The direct cooling of arterial blood by means of an intra-carotid heat exchange catheter compatible with recanalization systems is a novel promising approach. Focusing on the concept of "cold reperfusion", we developed an energetic model to calculate the rate of temperature decrease during intra-carotid cooling in case of physiological as well as decreased perfusion. Additionally, we discussed and considered the effect and biological significance of temperature decrease on resulting brain perfusion. Our model predicted a 2 °C brain temperature decrease in 8.3, 11.8 and 26.2 min at perfusion rates of 50, 30 and 10ml100g⋅min, respectively. The systemic temperature decrease - caused by the venous blood return to the main circulation - was limited to 0.5 °C in 60 min. Our results underline the potential of catheter-assisted, intracarotid blood cooling to provide a fast and selective brain temperature decrease in the phase of vessel recanalization. This method can potentially allow for a tissue hypothermia during the restoration of the physiological flow and thus a "cold reperfusion" in the setting of mechanical recanalization.


Assuntos
Temperatura Corporal , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Hipotermia Induzida , Infarto da Artéria Cerebral Média/terapia , Modelos Biológicos , Acidente Vascular Cerebral/terapia , Animais , Cateterismo , Humanos
15.
Europace ; 20(suppl_3): iii36-iii44, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476059

RESUMO

AIMS: Chronic left atrial enlargement (LAE) increases the risk of atrial fibrillation. Electrocardiogram (ECG) criteria might provide a means to diagnose LAE and identify patients at risk; however, current criteria perform poorly. We seek to characterize the potentially differential effects of atrial dilation vs. hypertrophy on the ECG P-wave. METHODS AND RESULTS: We predict effects on the P-wave of (i) left atrial dilation (LAD), i.e. an increase of LA cavity volume without an increase in myocardial volume, (ii) left atrial concentric hypertrophy (LACH), i.e. a thickened myocardial wall, and (iii) a combination of the two. We performed a computational study in a cohort of 72 anatomical variants, derived from four human atrial anatomies. To model LAD, pressure was applied to the LA endocardium increasing cavity volume by up to 100%. For LACH, the LA wall was thickened by up to 3.3 mm. P-waves were derived by simulating atrial excitation propagation and computing the body surface ECG. The sensitivity regarding changes beyond purely anatomical effects was analysed by altering conduction velocity by 25% in 96 additional model variants. Left atrial dilation prolonged P-wave duration (PWd) in two of four subjects; in one subject a shortening, and in the other a variable change were seen. Left atrial concentric hypertrophy, in contrast, consistently increased P-wave terminal force in lead V1 (PTF-V1) in all subjects through an enlarged amplitude while PWd was unaffected. Combined hypertrophy and dilation generally enhanced the effect of hypertrophy on PTF-V1. CONCLUSION: Isolated LAD has moderate effects on the currently used P-wave criteria, explaining the limited utility of PWd and PTF-V1 in detecting LAE in clinical practice. In contrast, PTF-V1 may be a more sensitive indicator of LA myocardial hypertrophy.


Assuntos
Potenciais de Ação , Fibrilação Atrial/diagnóstico , Função do Átrio Esquerdo , Remodelamento Atrial , Cardiomegalia/diagnóstico , Eletrocardiografia , Átrios do Coração/fisiopatologia , Frequência Cardíaca , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Simulação por Computador , Diagnóstico Diferencial , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Valor Preditivo dos Testes , Fatores de Risco , Fatores de Tempo
16.
Europace ; 18(suppl 4): iv35-iv43, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011829

RESUMO

AIMS: P-wave morphology correlates with the risk for atrial fibrillation (AF). Left atrial (LA) enlargement could explain both the higher risk for AF and higher P-wave terminal force (PTF) in lead V1. However, PTF-V1 has been shown to correlate poorly with LA size. We hypothesize that PTF-V1 is also affected by the earliest activated site (EAS) in the right atrium and its proximity to inter-atrial connections (IAC), which both show tremendous variability. METHODS AND RESULTS: Atrial excitation was triggered from seven different EAS in a cohort of eight anatomically personalized computational models. The posterior IACs were non-conductive in a second set of simulations. Body surface ECGs were computed and separated by left and right atrial contributions. Mid-septal EAS yielded the highest PTF-V1. More anterior/superior and more inferior EAS yielded lower absolute PTF-V1 values deviating by a factor of up to 2.0 for adjacent EAS. Earliest right-to-left activation was conducted via Bachmann's Bundle (BB) for anterior/superior EAS and shifted towards posterior IACs for more inferior EAS. Non-conducting posterior IACs increased PTF-V1 by up to 150% compared to intact posterior IACs for inferior EAS. LA contribution to the P-wave integral was 24% on average. CONCLUSION: The electrical contributor's site of earliest activation and intactness of posterior IACs affect PTF-V1 significantly by changing LA breakthrough sites independent from LA size. This should be considered for interpretation of electrocardiographical signs of LA abnormality and LA enlargement.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Função do Átrio Direito , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Adulto , Idoso , Fibrilação Atrial/diagnóstico , Função do Átrio Esquerdo , Eletrocardiografia , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
17.
Europace ; 16(3): 435-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569898

RESUMO

AIMS: Human ether-à-go-go-related gene (hERG) missense mutations N588K and L532P are both associated with atrial fibrillation (AF). However, the underlying gain-of-function mechanism is different. The aim of this computational study is to assess and understand the arrhythmogenic mechanisms of these genetic disorders on the cellular and tissue level as a basis for the improvement of therapeutic strategies. METHODS AND RESULTS: The IKr formulation of an established model of human atrial myocytes was adapted by using the measurement data of wild-type and mutant hERG channels. Restitution curves of the action potential duration and its slope, effective refractory period (ERP), conduction velocity, reentry wavelength (WL), and the vulnerable window (VW) were determined in a one-dimensional (1D) tissue strand. Moreover, spiral wave inducibility and rotor lifetime in a 2D tissue patch were evaluated. The two mutations caused an increase in IKr regarding both peak amplitude and current integral, whereas the duration during which IKr is active was decreased. The WL was reduced due to a shorter ERP. Spiral waves could be initiated by using mutation models as opposed to the control case. The frequency dependency of the VW was reversed. CONCLUSION: Both mutations showed an increased arrhythmogenicity due to decreased refractory time in combination with a more linear repolarization phase. The effects were more pronounced for mutation L532P than for N588K. Furthermore, spiral waves presented higher stability and a more regular pattern for L532P. These in silico investigations unveiling differences of mutations affecting the same ion channel may help to advance genotype-guided AF prevention and therapy strategies.


Assuntos
Fibrilação Atrial/fisiopatologia , Canais de Potássio Éter-A-Go-Go/genética , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Modelos Genéticos , Células Musculares , Potenciais de Ação/genética , Simulação por Computador , Canal de Potássio ERG1 , Humanos , Ativação do Canal Iônico/genética , Potenciais da Membrana/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Europace ; 16 Suppl 4: iv30-iv38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25362168

RESUMO

AIMS: The clinical efficacy in preventing the recurrence of atrial fibrillation (AF) is higher for amiodarone than for dronedarone. Moreover, pharmacotherapy with these drugs is less successful in patients with remodelled substrate induced by chronic AF (cAF) and patients suffering from familial AF. To date, the reasons for these phenomena are only incompletely understood. We analyse the effects of the drugs in a computational model of atrial electrophysiology. METHODS AND RESULTS: The Courtemanche-Ramirez-Nattel model was adapted to represent cAF remodelled tissue and hERG mutations N588K and L532P. The pharmacodynamics of amiodarone and dronedarone were investigated with respect to their dose and heart rate dependence by evaluating 10 descriptors of action potential morphology and conduction properties. An arrhythmia score was computed based on a subset of these biomarkers and analysed regarding circadian variation of drug concentration and heart rate. Action potential alternans at high frequencies was observed over the whole dronedarone concentration range at high frequencies, while amiodarone caused alternans only in a narrow range. The total score of dronedarone reached critical values in most of the investigated dynamic scenarios, while amiodarone caused only minor score oscillations. Compared with the other substrates, cAF showed significantly different characteristics resulting in a lower amiodarone but higher dronedarone concentration yielding the lowest score. CONCLUSION: Significant differences exist in the frequency and concentration-dependent effects between amiodarone and dronedarone and between different atrial substrates. Our results provide possible explanations for the superior efficacy of amiodarone and may aid in the design of substrate-specific pharmacotherapy for AF.


Assuntos
Amiodarona/análogos & derivados , Amiodarona/uso terapêutico , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/terapia , Simulação por Computador , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Modelos Cardiovasculares , Potenciais de Ação , Amiodarona/farmacocinética , Antiarrítmicos/farmacocinética , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Relação Dose-Resposta a Droga , Dronedarona , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Mutação , Análise Numérica Assistida por Computador , Recidiva , Fatores de Tempo , Resultado do Tratamento
19.
Artigo em Inglês | MEDLINE | ID: mdl-38227406

RESUMO

Feature importance methods promise to provide a ranking of features according to importance for a given classification task. A wide range of methods exist but their rankings often disagree and they are inherently difficult to evaluate due to a lack of ground truth beyond synthetic datasets. In this work, we put feature importance methods to the test on real-world data in the domain of cardiology, where we try to distinguish three specific pathologies from healthy subjects based on ECG features comparing to features used in cardiologists' decision rules as ground truth. We found that the SHAP and LIME methods and Chi-squared test all worked well together with the native Random forest and Logistic regression feature rankings. Some methods gave inconsistent results, which included the Maximum Relevance Minimum Redundancy and Neighbourhood Component Analysis methods. The permutation-based methods generally performed quite poorly. A surprising result was found in the case of left bundle branch block, where T-wave morphology features were consistently identified as being important for diagnosis, but are not used by clinicians.

20.
Cardiovasc Eng Technol ; 14(2): 296-314, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652165

RESUMO

PURPOSE: Atrial fibrillation is one of the most frequent cardiac arrhythmias in the industrialized world and ablation therapy is the method of choice for many patients. However, ablation scars alter the electrophysiological activation and the mechanical behavior of the affected atria. Different ablation strategies with the aim to terminate atrial fibrillation and prevent its recurrence exist but their impact on the performance of the heart is often neglected. METHODS: In this work, we present a simulation study analyzing five commonly used ablation scar patterns and their combinations in the left atrium regarding their impact on the pumping function of the heart using an electromechanical whole-heart model. We analyzed how the altered atrial activation and increased stiffness due to the ablation scars affect atrial as well as ventricular contraction and relaxation. RESULTS: We found that systolic and diastolic function of the left atrium is impaired by ablation scars and that the reduction of atrial stroke volume of up to 11.43% depends linearly on the amount of inactivated tissue. Consequently, the end-diastolic volume of the left ventricle, and thus stroke volume, was reduced by up to 1.4 and 1.8%, respectively. During ventricular systole, left atrial pressure was increased by up to 20% due to changes in the atrial activation sequence and the stiffening of scar tissue. CONCLUSION: This study provides biomechanical evidence that atrial ablation has acute effects not only on atrial contraction but also on ventricular performance. Therefore, the position and extent of ablation scars is not only important for the termination of arrhythmias but is also determining long-term pumping efficiency. If confirmed in larger cohorts, these results have the potential to help tailoring ablation strategies towards minimal global cardiovascular impairment.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Cicatriz/cirurgia , Resultado do Tratamento , Átrios do Coração/cirurgia , Volume Sistólico , Ablação por Cateter/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa