Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 295(3): 717-739, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124034

RESUMO

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.


Assuntos
Vias Biossintéticas/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Propanóis/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Lignina/genética , Propanóis/química , Saccharum/classificação , Saccharum/crescimento & desenvolvimento
2.
J Genet ; 87(3): 209-17, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19147905

RESUMO

The phenotypic plasticity of wing size and wing shape of Zaprionus indianus was investigated in relation to growth temperature (17 degrees C to 31 degrees C) in two natural populations living under different climates, equatorial and subtropical. The two populations were clearly distinguished not only by their wing size (the populations from the colder climate being bigger in size), but also by the shape of the response curves to growth temperature i.e., their reaction norms. In this respect, the temperature at which the size of the wing was maximum was about 3 degrees C higher in the equatorial population. Such a difference in size plasticity is already found in two other nonclosely related species, might be a general evolutionary pattern in drosophilids. Wing shape was investigated by calculating an ellipse included into the wing blade, then by considering the ratio of the two axes, and also by analysing the angular position of 10 wing-vein landmarks. For an overall shape index (ratio of the two axes of the ellipse), a regular and almost linear increase was observed with increasing temperature i.e., a more round shape at high temperatures. Wing shape was also analysed by considering the variations of the various angles according to temperature. A diversity of response curves was observed, revealing either a monotonous increase or decrease with increasing temperature, and sometimes a bell shape curve. An interesting conclusion is that, in most cases, a significant difference was observed between the two populations, and the difference was more pronounced at low temperatures. These angular variations are difficult to interpret in an evolutionary context. More comparative studies should be undertaken before reaching some general conclusions.


Assuntos
Adaptação Fisiológica , Clima , Drosophilidae/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Drosophilidae/crescimento & desenvolvimento , Feminino , Masculino , Tamanho do Órgão , Fenótipo , Temperatura , Asas de Animais/crescimento & desenvolvimento
3.
Genetica ; 125(2-3): 271-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16247699

RESUMO

Zaprionus indianus (Diptera: Drosophilidae) is an African species that was introduced in Brazil near the end of the 1990's decade. To evaluate the adaptive potential of morphological traits in natural populations of this recently introduced species, we have investigated wing size and shape variation at Rio de Janeiro populations only two years after the first record of Z. indianus in Brazil. Significant genetic differences among populations from three distinct ecological habitats were detected. The heritability and evolvability estimates show that, even with the population bottleneck that should have occurred during the invasion event, an appreciable amount of additive genetic variation for wing size and shape was retained. Our results also indicated a greater influence of environmental variation on wing size than on wing shape. The importance of quantitative genetic variability and plasticity in the successful establishment and dispersal of Z. indianus in the Brazilian territory is then discussed.


Assuntos
Drosophilidae/anatomia & histologia , Drosophilidae/genética , Animais , Brasil , Drosophilidae/classificação , Meio Ambiente , Feminino , Variação Genética , Masculino , Fenótipo , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa