Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37329888

RESUMO

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Assuntos
Neoplasias Hepáticas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Necroptose , Inflamação/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
2.
Clin Infect Dis ; 76(3): 408-415, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36189631

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are predominantly less effective against Omicron variants. Immunocompromised patients often experience prolonged viral shedding, resulting in an increased risk of viral escape. METHODS: In an observational, prospective cohort, 57 patients infected with Omicron variants who received sotrovimab alone or in combination with remdesivir were followed. The study end points were a decrease in SARS-CoV-2 RNA <106 copies/mL in nasopharyngeal swabs at day 21 and the emergence of escape mutations at days 7, 14, and 21 after sotrovimab administration. All SARS-CoV-2 samples were analyzed using whole-genome sequencing. Individual variants within the quasispecies were subsequently quantified and further characterized using a pseudovirus neutralization assay. RESULTS: The majority of patients (43 of 57, 75.4%) were immunodeficient, predominantly due to immunosuppression after organ transplantation or hematologic malignancies. Infections by Omicron/BA.1 comprised 82.5%, while 17.5% were infected by Omicron/BA.2. Twenty-one days after sotrovimab administration, 12 of 43 (27.9%) immunodeficient patients had prolonged viral shedding compared with 1 of 14 (7.1%) immunocompetent patients (P = .011). Viral spike protein mutations, some specific for Omicron (e.g., P337S and/or E340D/V), emerged in 14 of 43 (32.6%) immunodeficient patients, substantially reducing sensitivity to sotrovimab in a pseudovirus neutralization assay. Combination therapy with remdesivir significantly reduced emergence of escape variants. CONCLUSIONS: Immunocompromised patients face a considerable risk of prolonged viral shedding and emergence of escape mutations after early therapy with sotrovimab. These findings underscore the importance of careful monitoring and the need for dedicated clinical trials in this patient population.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Hospedeiro Imunocomprometido , Estudos Prospectivos , RNA Viral , SARS-CoV-2/genética
3.
Gastro Hep Adv ; 3(3): 353-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131142

RESUMO

Background and Aims: The entry inhibitor bulevirtide represents the first specific treatment for hepatitis-D virus (HDV)-infected patients. In clinical trials, around 80% of patients achieve normalization of alanine aminotransferase (ALT) with about 60% virological response after 1 year, but little is known about the dynamics of responses and clinical predictors of treatment outcomes. We report our single-center data from 15 patients and describe response dynamics, clinical outcomes, and predictive factors for treatment response. Methods: Retrospective data from 15 patients have been analyzed at our department who started treatment with bulevirtide between 10/2020 and 08/2022. According to our standard procedures, laboratory parameters were controlled monthly; transient elastography was performed every 3 months, and the treatment duration was 12 months. Results: Treatment response rates after 1 year of treatment were similar to published data from clinical trials. ALT normalization usually occurs between months 2-6 of treatment, followed by a virological response after ≥6 months. Patients with more severe hepatitis at the start of treatment were less likely to respond in the first year of treatment. Loss of HDV-RNA was observed in one-third of patients after ≥1 year of treatment. Low body mass index and high alpha-fetoprotein at baseline were possible predictors of a delayed treatment response. Conclusion: Bulevirtide is a safe treatment option for HDV, leading to a fast hepatological response. Of note, decrease in transaminases precedes virological response. Patients with high viral load and ALT levels respond slower, but nonresponders (as classified by Food and Drug Administration criteria) still show a reduction in viremia. Longer observation periods are required to determine the optimal duration of bulevirtide monotherapy.

4.
Redox Biol ; 75: 103211, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa