RESUMO
A phylogenetic analysis of samples taken from reported outbreaks of peste des petits ruminants virus (PPRV) in Georgia revealed a closer relationship to viruses from northern and eastern Africa than to viruses from countries closer to Georgia. This finding has crucial implications for the control of PPRV in the region.
Assuntos
Surtos de Doenças , Doenças das Cabras/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Viral/genética , Doenças dos Ovinos/epidemiologia , África/epidemiologia , Animais , Antígenos Virais/genética , República da Geórgia/epidemiologia , Doenças das Cabras/transmissão , Doenças das Cabras/virologia , Cabras , Peste dos Pequenos Ruminantes/transmissão , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Filogenia , Filogeografia , Ovinos , Doenças dos Ovinos/transmissão , Doenças dos Ovinos/virologiaRESUMO
BACKGROUND: Sheeppox (SPP) and goatpox (GTP) caused by sheeppox virus (SPPV) and goatpox virus (GTPV), respectively of the genus Capripoxvirus in the family Poxviridae, are severely afflicting small ruminants' production systems in Africa and Asia. In endemic areas, SPP and GTP are controlled using vaccination with live attenuated vaccines derived from SPPV, GTPV or Lumpy skin disease virus (LSDV). Sometimes outbreaks occur following vaccination. In order to successfully control the spread of the virus, it is essential to identify whether the animals were infected by the field strain and the vaccine did not provide sufficient protection. Alternatively, in some cases the vaccine strain may cause adverse reactions in vaccinated animals or in rare occasions, re-gain virulence. Thus, diagnostic tools for differentiation of virulent strains from attenuated vaccine strains of the virus are needed. The aim of this study was to identify an appropriate diagnostic target region in the capripoxvirus genome by comparing the genomic sequences of SPPV field isolates with those of the most widely used SPP vaccine strains. RESULTS: A unique 84 base pair nucleotide deletion located between the DNA ligase gene and the VARV B22R homologue gene was found only in SPPV vaccines derived from the Romanian and Yugoslavian RM/65 strains and absent in SPPV field isolates originated from various geographical locations of Asia and Africa. In addition, we developed and evaluated a conventional PCR assay, exploiting the targeted intergenic region to differentiate SPPV vaccine virus from field isolates. The assay produced an amplicon size of 218 bp for the vaccine strains, while the SPPV field isolates resulted in a 302 bp PCR fragment. The assay showed good sensitivity and specificity, and the results were in full agreement with the sequencing data of the PCR amplicons. CONCLUSION: The developed assay is an improvement of currently existing diagnostic tools and, when combined with a capripox virus species-specific assay, will enhance SPP and GTP diagnosis and surveillance and facilitate epidemiological investigations in countries using live attenuated SPP vaccines. In addition, for laboratories with limited resources, the assay provides a simple and cost-effective alternative for sequencing.
Assuntos
Capripoxvirus/imunologia , Doenças das Cabras/prevenção & controle , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/imunologia , Animais , Capripoxvirus/classificação , Capripoxvirus/genética , Linhagem Celular , Cabras , Reação em Cadeia da Polimerase , Ovinos , Especificidade da EspécieRESUMO
Between August and September 2016 pathological samples were collected from sheep and goats following suspected peste des petits ruminants (PPR) outbreaks in western Mongolia. RT-PCR followed by sequencing and phylogenetic analysis of the samples confirmed the presence of a PPR virus belonging to lineage IV. A full genome analysis of the viral RNA from one of the samples revealed a high similarity (99.0-99.5%) with PPR viruses currently circulating in China (2013-2015) indicating a common origin. This is the first genetic characterization of PPR virus in Mongolia and the data generated will have important implications for control and management of the disease in the region.
Assuntos
Genoma Viral , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , FilogeniaRESUMO
BACKGROUND: Orf is a contagious disease of sheep, goats and wild ungulates caused by orf virus (ORFV) a member of the genus Parapoxvirus, Poxviridae family. Although orf is endemic in Ethiopia, little attention has been given so far as it is not a notifiable disease by the World Organization for Animal Health. In this work, we have investigated orf outbreaks representing five different geographical locations of Ethiopia, in Amba Giorgis, Gondar zuria, Adet, Debre zeit and Adami Tulu, between 2008 and 2013. RESULTS: The viral isolation and the sequence analysis of the A32L and the B2L genes of eighteen representative isolates confirmed that sampled animals were infected by ORFVs. The phylogenetic study and the comparative analysis of the deduced amino acid profile suggests that there were two main clusters of ORFV isolates which were responsible for the investigated outbreaks. Additionally the analysis of these two genes showed limited variability to ORFVs encountered elsewhere. This is the first report on the genetic characterization of the ORFV isolates from sheep and goats in Ethiopia. CONCLUSION: The molecular characterization of Ethiopian ORFV isolates highlighted the circulation of two main clusters causing orf disease in sheep and goats. The use of laboratory based methods and a constant monitoring of Ethiopian ORFV isolates is needed to better understand the dynamic of ORFV circulating in the country and facilitate the implementation of control measures.
Assuntos
Ectima Contagioso/epidemiologia , Ectima Contagioso/virologia , Vírus do Orf/classificação , Vírus do Orf/genética , Sequência de Aminoácidos , Animais , DNA Viral , Surtos de Doenças , Ectima Contagioso/história , Etiópia/epidemiologia , Geografia Médica , Cabras , História do Século XXI , Dados de Sequência Molecular , Fenótipo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Ovinos , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.
Assuntos
Capripoxvirus , Vírus da Doença Nodular Cutânea , Infecções por Poxviridae , Doenças dos Ovinos , Vacinas Virais , Ovinos , Bovinos , Animais , Capripoxvirus/genética , Mutação , Genoma Viral , Vírus da Doença Nodular Cutânea/genética , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/veterinária , Vacinas Virais/genética , Doenças dos Ovinos/epidemiologia , CabrasRESUMO
Sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD) are economically significant pox diseases of ruminants, caused by sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively. SPPV and GTPV can infect both sheep and goats, while LSDV mainly affects cattle. The recent emergence of LSD in Asia and Europe and the repeated incursions of SPP in Greece, Bulgaria, and Russia highlight how these diseases can spread outside their endemic regions, stressing the urgent need to develop high-throughput serological surveillance tools. We expressed and tested two recombinant truncated proteins, the capripoxvirus homologs of the vaccinia virus C-type lectin-like protein A34 and the EEV glycoprotein A36, as antigens for an indirect ELISA (iELISA) to detect anti-capripoxvirus antibodies. Since A34 outperformed A36 by showing no cross-reactivity to anti-parapoxvirus antibodies, we optimized an A34 iELISA using two different working conditions, one for LSD in cattle and one for SPP/GTP in sheep and goats. Both displayed sound sensitivities and specificities: 98.81% and 98.72%, respectively, for the LSD iELISA, and 97.68% and 95.35%, respectively, for the SPP/GTP iELISA, and did not cross-react with anti-parapoxvirus antibodies of cattle, sheep, and goats. These assays could facilitate the implementation of capripox control programs through serosurveillance and the screening of animals for trade.
RESUMO
Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κß p65 (NF-κß), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κß, between IL-18 and IL-15, and between NF-κß and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 ß, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.
Assuntos
Capripoxvirus/imunologia , Imunidade Inata , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/imunologia , Animais , Capripoxvirus/genética , Capripoxvirus/isolamento & purificação , Leucócitos Mononucleares/imunologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular , Ovinos , Vacinas Atenuadas/imunologiaRESUMO
Goatpox virus (GTPV) belongs to the genus Capripoxvirus, together with sheeppox virus (SPPV) and lumpy skin disease virus (LSDV). GTPV primarily affects sheep, goats and some wild ruminants. Although GTPV is only present in Africa and Asia, the recent spread of LSDV in Europe and Asia shows capripoxviruses could escape their traditional geographical regions to cause severe outbreaks in new areas. Therefore, it is crucial to develop effective source tracing of capripoxvirus infections. Earlier, conventional phylogenetic methods, based on limited samples, identified three different nucleotide sequence profiles in the G-protein-coupled chemokine receptor (GPCR) gene of GTPVs. However, this method did not differentiate GTPV strains by their geographical origins. We have sequenced the GPCR gene of additional GTPVs and analyzed them with publicly available sequences, using conventional alignment-based methods and an alignment-free approach exploiting k-mer frequencies. Using the alignment-free method, we can now classify GTPVs based on their geographical origin: African GTPVs and Asian GTPVs, which further split into Western and Central Asian (WCA) GTPVs and Eastern and Southern Asian (ESA) GTPVs. This approach will help determine the source of introduction in GTPV emergence in disease-free regions and detect the importation of additional strains in disease-endemic areas.
RESUMO
Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.
RESUMO
Endemic circulation of foot-and-mouth disease (FMD) in Africa and Asia poses a continuous risk to countries in Europe, North America, and Oceania which are free from the disease. Introductions of the disease into a free region have dramatic economic impacts, especially if they are not detected at an early stage and controlled rapidly. However, farmers and veterinarians have an obvious disincentive to report clinical signs that are consistent with FMD, due to the severe consequences of raising an official suspicion, such as farm-level quarantine. One way that the risk of late detection can be mitigated is offering non-discriminatory exclusion testing schemes for differential diagnostics, wherein veterinarians can submit samples without the involvement of the competent authority and without sanctions or costs for the farmer. This review considers the benefits and limitations of this approach to improve the early detection of FMD in free countries and gives an overview of the FMD testing schemes currently in use in selected countries in Europe and the Americas as well as in Australia.
RESUMO
African swine fever (ASF) is a highly lethal haemorrhagic disease in domestic and wild swine that has acquired great importance in sub-Saharan Africa since 1997. ASF was first reported in Cameroon in 1982 and was detected only in Southern Cameroon (South, West, East, Northwest, Southwest, Littoral, and Centre regions) until February 2010 when suspected ASF outbreaks were reported in the North and Far North regions. We investigated those outbreaks by analysing samples that were collected from sick pigs between 2010 and 2018. We confirmed 428 positive samples by ELISA and real-time PCR and molecularly characterized 48 representative isolates. All the identified virus isolates were classified as ASFV genotype I based on the partial B646L gene (C-terminal end of VP72 gene) and the full E183L gene encoding p54 protein analysis. Furthermore, analysis of the central variable region (CVR) within the B602L gene demonstrated that there were 3 different variants of ASFV genotype I, with 19, 20, and 21 tetrameric tandem repeat sequences (TRSs), that were involved in the 2010-2018 outbreaks in Cameroon. Among them, only variant A (19 TRSs) was identical to the Cam/82 isolate found in the country during the first outbreaks in 1981-1982. This study demonstrated that the three variants of ASFV isolates involved in these outbreaks were similar to those of neighbouring countries, suggesting a movement of ASFV strains across borders. Designing common control measures in affected regions and providing a compensation programme for farmers will help reduce the incidence and spread of this disease.
Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/classificação , Animais , Camarões/epidemiologia , Surtos de Doenças , Variação Genética , Genótipo , Filogenia , Sus scrofa , SuínosRESUMO
Sheep poxvirus (SPPV), goat poxvirus (GTPV) and lumpy skin disease virus (LSDV) affect small ruminants and cattle causing sheeppox (SPP), goatpox (GTP) and lumpy skin disease (LSD) respectively. In endemic areas, vaccination with live attenuated vaccines derived from SPPV, GTPV or LSDV provides protection from SPP and GTP. As live poxviruses may cause adverse reactions in vaccinated animals, it is imperative to develop new diagnostic tools for the differentiation of SPPV field strains from attenuated vaccine strains. Within the capripoxvirus (CaPV) homolog of the variola virus B22R gene, we identified a unique region in SPPV vaccines with two deletions of 21 and 27 nucleotides and developed a High-Resolution Melting (HRM)-based assay. The HRM assay produces four distinct melting peaks, enabling the differentiation between SPPV vaccines, SPPV field isolates, GTPV and LSDV. This HRM assay is sensitive, specific, and provides a cost-effective means for the detection and classification of CaPVs and the differentiation of SPPV vaccines from SPPV field isolates.
Assuntos
Capripoxvirus/genética , Capripoxvirus/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/virologia , Vacinas Virais/imunologia , Animais , Capripoxvirus/classificação , Capripoxvirus/isolamento & purificação , DNA Viral , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Ovinos , Temperatura de TransiçãoRESUMO
Bluetongue virus (BTV) is an emerging transboundary disease in Europe, which can cause significant production losses among ruminants. The analysis presented here assessed the costs of BTV surveillance and vaccination programmes in Austria and Switzerland between 2007 and 2016. Costs were compared with respect to time, type of programme, geographical area and who was responsible for payment. The total costs of the BTV vaccination and surveillance programmes in Austria amounted to 23.6 million, whereas total costs in Switzerland were 18.3 million. Our analysis demonstrates that the costs differed between years and geographical areas, both within and between the two countries. Average surveillance costs per animal amounted to approximately 3.20 in Austria compared with 1.30 in Switzerland, whereas the average vaccination costs per animal were 6.20 in Austria and 7.40 in Switzerland. The comparability of the surveillance costs is somewhat limited, however, due to differences in each nation's surveillance (and sampling) strategy. Given the importance of the export market for cattle production, investments in such programmes are more justified for Austria than for Switzerland. The aim of the retrospective assessment presented here is to assist veterinary authorities in planning and implementing cost-effective and efficient control strategies for emerging livestock diseases.
Assuntos
Bluetongue/epidemiologia , Bluetongue/prevenção & controle , Custos e Análise de Custo , Programas de Imunização/economia , Animais , Áustria/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Cabras , Vigilância da População , Estudos Retrospectivos , Ovinos , Suíça/epidemiologiaRESUMO
The complete genome sequence of a peste des petits ruminants virus (PPRV) from goat samples collected in Sierra Leone in 2011 is reported here. The genome shows a higher nucleotide sequence identity (98.9%) with a lineage II PPRV from Senegal than to PPRVs from neighboring Liberia and Ivory Coast.
RESUMO
Peste des Petits Ruminants (PPR) is a serious transboundary infectious disease of small ruminants. The causal agent, PPR virus (PPRV), can be separated into four genetically distinct lineages using phylogenetic analysis. In recent decades, lineage IV of PPRV has dramatically extended its geographic distribution from Asia to the Middle East and to Africa, where it has progressively replaced other PPRV lineages. Lineages I and II are historically distributed in West Africa. Currently, lineage II appears to dominate the region, whereas the last recorded occurrence of lineage I dates back to 1994. Recent studies reported the presence of lineage IV in Nigeria, suggesting that this lineage is expanding in West Africa. In Niger, a close neighbour of Nigeria, PPRV has never been genetically characterized, despite reports of PPR incidence. In this study, pathological samples collected from sick goats were collected in 2013 during a suspected PPR outbreak in southern Niger close to the Nigerian border were compared to samples collected in a previous investigation in October 2001 in south-western Niger. These strains were characterized by sequencing and phylogenetic analysis to identify their genetic lineage. Our results show that in 2001, lineages I and II were cocirculating in south-western Niger, whereas the strain that caused the outbreak in 2013 belonged to lineage IV and is closely related to strains identified in Nigeria. These results confirm the progression of lineage IV in West Africa. The process of PPRV lineage replacement and its implications for the epidemiology and the control of the disease in this region are unclear and should be the subject of further studies in the field.
Assuntos
Surtos de Doenças/veterinária , Cabras/virologia , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/genética , Animais , Níger/epidemiologia , Peste dos Pequenos Ruminantes/genética , Filogenia , RuminantesRESUMO
Poxviruses belonging to the Orthopoxvirus, Capripoxvirus and Parapoxvirus genera share common host species and create a challenge for diagnosis. Here, we developed a novel multiplex PCR method for the simultaneous detection and differentiation of eight poxviruses, belonging to three genera: cowpox virus (CPXV) and camelpox virus (CMLV) [genus Orthopoxvirus]; goatpox virus (GTPV), sheeppox virus (SPPV) and lumpy skin disease virus (LSDV) [genus Capripoxvirus]; orf virus (ORFV), pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) [genus Parapoxvirus]. The assay is based on high-resolution melting curve analysis (HRMCA) of PCR amplicons produced using genus specific primer pairs and dsDNA binding dye. Differences in fragment size and GC content were used as discriminating power. The assay generated three well separated melting regions for each genus and provided additional intra-genus genotyping allowing the differentiation of the eight poxviruses based on amplicon melting temperature. Out of 271 poxviral DNA samples tested: seven CPXV, 25 CMLV, 42 GTPV, 20 SPPV, 120 LSDV, 33 ORFV, 20 PCPV and two BPSV were detected; two samples presented co-infection with CMLV and PCPV. The assay provides a rapid, sensitive, specific and cost-effective method for the detection of pox diseases in a broad range of animal species and humans.
Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Poxviridae/diagnóstico , Poxviridae/classificação , Animais , Composição de Bases , DNA Viral/análise , Genótipo , Humanos , Reação em Cadeia da Polimerase Multiplex/veterinária , Poxviridae/genética , Poxviridae/isolamento & purificação , Infecções por Poxviridae/veterinária , Sensibilidade e Especificidade , Especificidade da Espécie , Temperatura de TransiçãoRESUMO
Peste des petits ruminants (PPR) is a contagious and often fatal transboundary animal disease affecting mostly sheep, goats and wild small ruminants. This disease is endemic in most of Africa, the Middle, Near East, and large parts of Asia. The causal agent is peste des petits ruminants virus (PPRV), which belongs to the genus Morbillivirus in the family Paramyxoviridae. This genus also includes measles virus (MV), canine distemper virus (CDV) and rinderpest virus (RPV). All are closely related viruses with serological cross reactivity. In this study, we have developed a Luciferase Immunoprecipitation System (LIPS) for the rapid detection of antibodies against PPRV in serum samples and for specific differentiation from antibodies against RPV. PPR and rinderpest (RP) serum samples were assayed by PPR-LIPS and two commercially available PPR cELISA tests. The PPR-LIPS showed high sensitivity and specificity for the samples tested and showed no cross reactivity with RPV unlike the commercial PPR cELISA tests which did cross react with RPV. Based on the results shown in this study, PPR-LIPS is presented as a good candidate for the specific serosurveillance of PPR.
Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Cabras/imunologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste Bovina/imunologia , Ovinos/imunologia , Animais , Anticorpos Antivirais/imunologia , Cabras/sangue , Cabras/virologia , Imunoprecipitação , Luciferases , Peste dos Pequenos Ruminantes/diagnóstico , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/virologia , Sensibilidade e Especificidade , Ovinos/sangue , Ovinos/virologiaRESUMO
Aim of the study was to detect antibodies and potential risk factors for an infec- tion with Leptospira in horses in Middle Germany. Serum samples of 314 horses were examined retrospectively by microscopic agglutination test for the presence of antibodies against eight Leptospira serovars. In total, 17.2% (n = 54) of the horses were positive for one or more of the serovars analyzed. The most prevalent serovar was lcterohaemorrhagiae (11.1%), followed by serovar Bratislava (9.6 %) and Grippotyphosa (1.9%). Mares showed a significantly higher occurrence of antibodies (p < 0.05) than geldings or stallions. Horses used for breeding have a significantly lower risk than horses used in sport or horses used for leisure activity. There was also a significantly higher prevalence (p < 0.05) in summer than in the other seasons. No significant influence of breed, husbandry conditions and age on the antibody occurrence was observed (p > 0.05). The clinical chemical parameters did not differ significantly between horses with positive or negative Leptospira antibody result (p > 0.05). It became apparent that horses can be infected with Leptospira without developing of clinical symptoms.
Assuntos
Anticorpos Antibacterianos/sangue , Doenças dos Cavalos/imunologia , Leptospira/imunologia , Leptospirose/veterinária , Animais , Alemanha/epidemiologia , Doenças dos Cavalos/epidemiologia , Cavalos , Leptospirose/epidemiologia , Leptospirose/imunologia , Prevalência , Estudos Retrospectivos , Fatores de RiscoRESUMO
Camelpox and camel contagious ecthyma are infectious viral diseases of camelids caused by camelpox virus (CMLV) and camel contagious ecthyma virus (CCEV), respectively. Even though, in Ethiopia, pox disease has been creating significant economic losses in camel production, little is known on the responsible pathogens and their genetic diversity. Thus, the present study aimed at isolation, identification and genetic characterization of the causative viruses. Accordingly, clinical case observations, infectious virus isolation, and molecular and phylogenetic analysis of poxviruses infecting camels in three regions and six districts in the country, Afar (Chifra), Oromia (Arero, Miyu and Yabello) and Somali (Gursum and Jijiga) between 2011 and 2014 were undertaken. The full hemagglutinin (HA) and partial A-type inclusion protein (ATIP) genes of CMLV and full major envelope protein (B2L) gene of CCEV of Ethiopian isolates were sequenced, analyzed and compared among each other and to foreign isolates. The viral isolation confirmed the presence of infectious poxviruses. The preliminary screening by PCR showed 27 CMLVs and 20 CCEVs. The sequence analyses showed that the HA and ATIP gene sequences are highly conserved within the local isolates of CMLVs, and formed a single cluster together with isolates from Somalia and Syria. Unlike CMLVs, the B2L gene analysis of Ethiopian CCEV showed few genetic variations. The phylogenetic analysis revealed three clusters of CCEV in Ethiopia with the isolates clustering according to their geographical origins. To our knowledge, this is the first report indicating the existence of CCEV in Ethiopia where camel contagious ecthyma was misdiagnosed as camelpox. Additionally, this study has also disclosed the existence of co-infections with CMLV and CCEV. A comprehensive characterization of poxviruses affecting camels in Ethiopia and the full genome sequencing of representative isolates are recommended to better understand the dynamics of pox diseases of camels and to assist in the implementation of more efficient control measures.
Assuntos
Orthopoxvirus/genética , Infecções por Poxviridae/epidemiologia , Poxviridae/classificação , Poxviridae/genética , Animais , Camelus/virologia , Análise por Conglomerados , Coinfecção , Surtos de Doenças , Ectima Contagioso/virologia , Etiópia/epidemiologia , Hemaglutininas Virais/genética , Orthopoxvirus/isolamento & purificação , Orthopoxvirus/patogenicidade , Filogenia , Reação em Cadeia da Polimerase , Poxviridae/isolamento & purificação , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/virologia , Análise de Sequência de DNA , Proteínas do Envelope Viral/genéticaRESUMO
Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.