Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(37): 11986-11994, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31487193

RESUMO

The local structure of water on chemically and structurally different surfaces is a subject of ongoing research. In particular, confined spaces as found in mesoporous silica have a pronounced effect on the interplay between the adsorbate-adsorbate and adsorbate-surface interactions. Mid-infrared spectroscopy is ideally suited to quantitatively and qualitatively study such systems as the probed molecular vibrations are highly sensitive to intermolecular interactions. Here, the quantity and structure of water adsorbed from the gas phase into silica mesopores at different water vapor pressures was monitored using mid-infrared attenuated total reflection (ATR) spectroscopy. Germanium ATR crystals were coated with different mesoporous silica films prepared by evaporation-induced self-assembly. Quantitative analysis of the water bending vibration at 1640 cm-1 at varying vapor pressure allows for retrieving porosity and pore size distribution of the mesoporous films. The results were in excellent agreement with those obtained from ellipsometric porosimetry. In addition, different degrees of hydrogen bonding of water as reflected in the band position and shape of the stretching vibrations (3000-3800 cm-1) were analyzed and attributed to high-density, unordered bulk, low-density, and surface-induced ordered water. Thereby, the progression of surface-induced ordered water and bulk water as a function of water vapor pressure was studied for different pore sizes. Small pores of 5 nm diameter showed a number of two-ordered monolayers, whereas for pores >12 nm diameter, the number of ordered monolayers is significantly larger and agrees with the number observed on planar SiO2 surfaces.

2.
ACS Appl Mater Interfaces ; 11(4): 4439-4446, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30629407

RESUMO

A simple double thin-film coating-based device is proposed to quantify the ethanol content in humid air featuring a 10 ppm resolution and spanning a dynamic range from 0 to 1000 ppm. The transduction involves the measurement of the direct optical reflection intensity, changing upon refractive index variations induced by water and ethanol adsorption within the coatings. The first thin-film coating is a microporous methyl-functionalized, silica xerogel material more sensitive to alcohol, and the second one is a microporous pure silica xerogel material more sensitive to water. The precision of the sensor is achieved through a mathematical treatment applied on the time resolved adsorption period. Reflection signals of both the ethanol- and water-sensitive coatings are taken into account in the treatment to correct for differences in ambient conditions (temperature, relative humidity, presence of volatile organic compounds) within the same chamber previous to data analysis, which corresponds to realistic operating conditions. As the adsorption mechanism is governed by molecular dynamic equilibrium, these sensors are fast and instantaneously regenerated in ambient air. The sensor is easy to assemble and was reusable for a period exceeding 1 year (maximal tested time).

3.
J Phys Chem B ; 121(25): 6220-6225, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28598620

RESUMO

Dip-coating is one of the most convenient methods used in laboratory and industry to deposit a solid layer onto a surface with a controlled thickness from a chemical solution. The present Article investigates the influence of the withdrawal speed on the film thickness and homogeneity with respect to the dipping angle ranging from 90° (conventional vertical configuration) to 1° (quasi-horizontal configuration). Several advantages were found in the latter extreme low-dipping angle conditions that are (i) an available wider range of thickness, (ii) the elimination of the perturbations/effects induced by evaporation, and (iii) the compatibility with large surface and single face deposition at high throughput and using a minimal amount of solution. One shows that experimental data follow the Landau-Levich model, modified by Tallmadge for angle dependence, only for intermediate regimes of speed. A maximal thickness limited by the physical-chemical characteristics of the initial solution is reached at high speeds while a minimal thickness, corresponding to a single layer of solute interacting with the substrate surface can be obtained at very low speeds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa