Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(5): 117, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35441297

RESUMO

Assessment and understanding of changes in particle size of active pharmaceutical ingredients (API) and excipients as a function of solid dosage form processing is an important but under-investigated area that can impact drug product quality. In this study, X-ray microscopy (XRM) was investigated as a method for determining the in situ particle size distribution of API agglomerates and an excipient at different processing stages in tablet manufacturing. An artificial intelligence (AI)-facilitated XRM image analysis tool was applied for quantitative analysis of thousands of individual particles, both of the API and the major filler component of the formulation, microcrystalline cellulose (MCC). Domain size distributions for API and MCC were generated along with the calculation of the porosity of each respective component. The API domain size distributions correlated with laser diffraction measurements and sieve analysis of the API, formulation blend, and granulation. The XRM analysis demonstrated that attrition of the API agglomerates occurred secondary to the granulation stage. These results were corroborated by particle size distribution and sieve potency data which showed generation of an API fines fraction. Additionally, changes in the XRM-calculated size distribution of MCC particles in subsequent processing steps were rationalized based on the known plastic deformation mechanism of MCC. The XRM data indicated that size distribution of the primary MCC particles, which make up the larger functional MCC agglomerates, is conserved across the stages of processing. The results indicate that XRM can be successfully applied as a direct, non-invasive method to track API and excipient particle properties and microstructure for in-process control samples and in the final solid dosage form. The XRM and AI image analysis methodology provides a data-rich way to interrogate the impact of processing stresses on API and excipients for enhanced process understanding and utilization for Quality by Design (QbD).


Assuntos
Excipientes , Microscopia , Inteligência Artificial , Excipientes/química , Tamanho da Partícula , Comprimidos , Raios X
2.
J Control Release ; 359: 373-383, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295729

RESUMO

Sustained local delivery of meloxicam by polymeric structures is desirable for preventing subacute inflammation and biofilm formation following tissue incision or injury. Our previous study demonstrated that meloxicam release from hot-melt extruded (HME) poly(ε-caprolactone) (PCL) matrices could be controlled by adjusting the drug content. Increasing drug content accelerated the drug release as the initial drug release generated a pore network to facilitate subsequent drug dissolution and diffusion. In this study, high-resolution micro-computed tomography (HR µCT) and artificial intelligence (AI) image analysis were used to visualize the microstructure of matrices and simulate the drug release process. The image analysis indicated that meloxicam release from the PCL matrix was primarily driven by diffusion but limited by the amount of infiltrating fluid when drug content was low (i.e., the connectivity of the drug/pore network was poor). Since the drug content is not easy to change when a product has a fixed dose and dimension/geometry, we sought an alternative approach to control the meloxicam release from the PCL matrices. Here, magnesium hydroxide (Mg(OH)2) was employed as a solid porogen in the drug-PCL matrix so that Mg(OH)2 dissolved with time in the aqueous environment creating additional pore networks to facilitate local dissolution and diffusion of meloxicam. PCL matrices were produced with a fixed 30 wt% meloxicam loading and variable Mg(OH)2 loadings from 20 wt% to 50 wt%. The meloxicam release increased in proportion to the Mg(OH)2 content, resulting in almost complete drug release in 14 d from the matrix with 50 wt% Mg(OH)2. The porogen addition is a simple strategy to tune drug release kinetics, applicable to other drug-eluting matrices with similar constraints.


Assuntos
Inteligência Artificial , Liberação Controlada de Fármacos , Preparações de Ação Retardada/química , Meloxicam , Cinética , Microtomografia por Raio-X
3.
J Pharm Sci ; 111(7): 1896-1910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34902434

RESUMO

The development of long-acting drug formulations requires efficient characterization technique as the designed 6-12 months release duration renders real-time in vitro and in vivo experiments cost and time prohibitive. Using a novel image-based release modeling method, release profiles were predicted from X-Ray Microscopy (XRM) of T0 samples. A validation study with the in vitro release test shows good prediction accuracy of the initial burst release. Through fast T0 image-based release prediction, the impact of formulation and process parameters on burst release rate was investigated. Recognizing the limitations of XRM, correlative imaging with Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) was introduced. A water stress test was designed to directly elucidate the formation of pores through polymer-drug-water interplay. Through an iterative correction method that considers poly(lactic-co-glycolic acid) (PLGA) polymer degradation, good agreement was achieved between release predictions  using FIB-SEM images acquired from T0 samples and in vitro testing data. Furthermore, using image-based release simulations, a practical percolation threshold was identified that has profound influence on the implant performance.  It is proposed as an important critical quality attribute for biodegradable long-acting delivery system, that needs to be investigated and quantified.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Implantes Absorvíveis , Microscopia Eletrônica de Varredura , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
J Control Release ; 349: 580-591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803326

RESUMO

The distribution of the active pharmaceutical ingredient (API) within polymer-based controlled release drug products is a critical quality attribute (CQA). It is crucial for the development of such products, to be able to accurately characterize phase distributions in these products to evaluate performance and microstructure (Q3) equivalence. In this study, polymer, API, and porosity distributions in poly(lactic-co-glycolic acid) (PLGA) microspheres were characterized using a combination of focused ion beam scanning electron microscopy (FIB-SEM) and quantitative artificial intelligence (AI) image analytics. Through in-depth investigations of nine different microsphere formulations, microstructural CQAs were identified including the abundance, domain size, and distribution of the API, the polymer, and the microporosity. 3D models, digitally transformed from the FIB-SEM images, were reconstructed to predict controlled drug release numerically. Agreement between the in vitro release experiments and the predictions validated the image-based release modelling method. Sensitivity analysis revealed the dependence of release on the distribution and size of the API particles and the porosity within the polymeric microspheres, as captured through FIB-SEM imaging. To our knowledge, this is the first report showing that microstructural CQAs in PLGA microspheres derived from imaging can be quantitatively and predictively correlated with formulation and manufacturing parameters.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Inteligência Artificial , Preparações de Ação Retardada , Ácido Láctico/química , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
J Control Release ; 342: 189-200, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990702

RESUMO

For effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with commercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively. PCL allowed for sustained release of meloxicam over two weeks and was used as a carrier of meloxicam. Solid-state and image analyses indicated that the PCL matrices encapsulated meloxicam in crystalline clusters, which dissolved in aqueous medium and generated pores for subsequent drug release. The subcutaneously implanted meloxicam-loaded PCL matrices in rats showed pharmacokinetic profiles consistent with their in vitro release kinetics, where higher drug loading led to faster drug release. This study finds that the choice of polymer platform is crucial to continuous release of meloxicam and the drug release rate can be controlled by the amount of drug loaded in the polymer matrices.


Assuntos
Portadores de Fármacos , Polímeros , Animais , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Meloxicam , Polímeros/química , Ratos
6.
J Pharm Sci ; 110(10): 3418-3430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089709

RESUMO

Long-acting implants are typically formulated using carrier(s) with specific physical and chemical properties, along with the active pharmaceutical ingredient (API), to achieve the desired daily exposure for the target duration of action. In characterizing such formulations, real-time in-vitro and in-vivo experiments that are typically used to characterize implants are lengthy, costly, and labor intensive as these implants are designed to be long acting. A novel characterization technique, combining high resolution three-dimensional X-Ray microscopy imaging, image-based quantification, and transport simulation, has been employed to provide a mechanistic understanding of formulation and process impact on the microstructures and performance of a polymer-based implant. Artificial intelligence-based image segmentation and image data analytics were used to convert morphological features visualized at high resolution into numerical microstructure models. These digital models were then used to calculate key physical parameters governing drug transport in a polymer matrix, including API uniformity, API domain size, and permeability. This powerful new tool has the potential to advance the mechanistic understanding of the interplay between drug-microstructure and performance and accelerate the therapeutic development long-acting implants.


Assuntos
Inteligência Artificial , Polímeros , Liberação Controlada de Fármacos , Microscopia , Raios X
7.
Eur J Pharm Sci ; 165: 105921, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229077

RESUMO

For oral solid dosage forms, disintegration and dissolution properties are closely related to the powders and particles used in their formulation. However, there remains a strong need to characterize the impact of particle structures on tablet compaction and performance. Three-dimensional non-invasive tomographic imaging plays an increasingly essential role in the characterization of drug substances, drug product intermediates, and drug products. It can reveal information hidden at the micro-scale which traditional characterization approaches fail to divulge due to a lack of resolution. In this study, two batches of spray-dried particles (SDP) and two corresponding tablets of an amorphous product, merestinib (LY2801653), were analyzed with 3D X-Ray Microscopy. Artificial intelligence-based image analytics were used to quantify physical properties, which were then correlated with dissolution behavior. The correlation derived from the image-based characterization was validated with conventional laboratory physical property measurements. Quantitative insights obtained from image-analysis including porosity, pore size distribution, surface area and pore connectivity helped to explain the differences in dissolution behavior between the two tablets, with root causes traceable to the microstructure differences in their corresponding SDPs.


Assuntos
Inteligência Artificial , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós , Solubilidade , Comprimidos , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa