Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 135(20): 1772-1782, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219446

RESUMO

Oncogenic RAS mutations pose substantial challenges for rational drug discovery. Sequence variations within the hypervariable region of Ras isoforms underlie differential posttranslational modification and subcellular trafficking, potentially resulting in selective vulnerabilities. Specifically, inhibiting the palmitoylation/depalmitoylation cycle is an appealing strategy for treating NRAS mutant cancers, particularly as normal tissues would retain K-Ras4b function for physiologic signaling. The role of endogenous N-RasG12D palmitoylation in signal transduction, hematopoietic differentiation, and myeloid transformation is unknown, and addressing these key questions will inform efforts to develop mechanism-based therapies. To evaluate the palmitoylation/depalmitoylation cycle as a candidate drug target in an in vivo disease-relevant model system, we introduced a C181S mutation into a conditional NrasG12D "knock-in" allele. The C181S second-site amino acid substitution abrogated myeloid transformation by NrasG12D, which was associated with mislocalization of the nonpalmitoylated N-Ras mutant protein, reduced Raf/MEK/ERK signaling, and alterations in hematopoietic stem and progenitor populations. Furthermore, hematologic malignancies arising in NrasG12D/G12D,C181S compound heterozygous mice invariably acquired revertant mutations that restored cysteine 181. Together, these studies validate the palmitoylation cycle as a promising therapeutic target in NRAS mutant cancers.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Lipoilação/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Ácido Aspártico/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Glicina/genética , Neoplasias Hematológicas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Ácido Palmítico/metabolismo
2.
Cult Health Sex ; 18(10): 1165-79, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27188876

RESUMO

Hip-hop media and Black-oriented reality television are powerful mechanisms for conveying and promoting stereotypes of Black women. Black women's sexuality is frequently presented as highly-salient in each medium. However, little is known about the impact of those images on Black women's sexuality and identity. The current study uses focus-group methodology to engage young adult Black in critical discussion of two predominant sexual scripts found in hip-hop music and Black-oriented reality television - the Freak and the Gold Digger. Analyses revealed shared and distinct aspects of each sexual script represented in both media and the impact of those scripts on participants' experiences. Implications for future research are discussed.


Assuntos
Negro ou Afro-Americano/psicologia , Amor , Música , Sexualidade/psicologia , Identificação Social , Televisão , Adulto , Cultura , Feminino , Grupos Focais , Humanos , Relações Interpessoais , Percepção Social , Inquéritos e Questionários
3.
Acta Biomater ; 154: 83-96, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162763

RESUMO

The gastrointestinal (GI) tract, particularly the colon region, holds a highly diverse microbial community that plays an important role in the metabolism, physiology, nutrition, and immune function of the host body. Accumulating evidence has revealed that alteration in these microbial communities is the pivotal step in developing various metabolic diseases, including obesity, inflammatory bowel disease (IBD), and colorectal cancer. However, there is still a lack of clear understanding of the interrelationship between microbiota and diet as well as the effectiveness of chemoprevention strategies, including pre and probiotic agents in modifying the colonic microbiota and preventing digestive diseases. Existing methods for assessing these microbiota-diet interactions are often based on samples collected from the feces or endoscopy techniques which are incapable of providing information on spatial variations of the gut microbiota or are considered invasive procedures. To address this need, here we have developed an electronic-free smart capsule that enables site-specific sampling of the gut microbiome within the proximal colon region of the GI tract. The 3D printed device houses a superabsorbent hydrogel bonded onto a flexible polydimethylsiloxane (PDMS) disk that serves as a milieu to collect the fluid in the gut lumen and its microbiome by rapid swelling and providing the necessary mechanical actuation to close the capsule after the sampling is completed. The targeted colonic sampling is achieved by coating the sampling aperture on the capsule with a double-layer pH-sensitive enteric coating, which delays fluid in the lumen from entering the capsule until it reaches the proximal colon of the GI tract. To identify the appropriate pH-responsive double-layer coating and processing condition, a series of systematic dissolution characterizations in different pH conditions that mimicked the GI tract was conducted. The effective targeted microbial sampling performance and preservation of the smart capsule with the optimized design were validated using both realistic in vitro GI tract models with mixed bacteria cultures and in vivo with pigs as an animal model. The results from 16s rRNA and WideSeq analysis in both in vitro and in vivo studies showed that the bacterial population sampled within the retrieved capsule closely matched the bacterial population within the targeted sampling region (proximal colon). Herein, it is envisioned that such smart sampling capsule technology will provide new avenues for gastroenterological research and clinical applications, including diet-host-microbiome relationships, focused on human GI function and health. STATEMENT OF SIGNIFICANCE: The colonic microbiota plays a major role in the etiology of numerous diseases. Extensive efforts have been conducted to monitor the gut microbiome using sequencing technologies based on samples collected from feces or mucosal biopsies that are typically obtained by colonoscopy. Despite the simplicity of fecal sampling procedures, they are incapable of preserving spatial and temporal information about the bacteria through the gastrointestinal (GI) tract. In contrast, colonoscopy is an invasive and impractical approach to frequently assess the effect of dietary and therapeutic intake on the microbiome and their impact on the health of the patient. Here, we developed a non-invasive capsule that enables targeted sampling from the ascending colon, thereby providing crucial information for disease prediction and monitoring.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Suínos , Animais , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/fisiologia , Colo , Fezes/microbiologia , Bactérias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa