Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Genomics ; 25(1): 195, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373903

RESUMO

BACKGROUND: Lipoxygenase (LOX) is a multifunctional enzyme that is primarily related to plant organ growth and development, biotic and abiotic stress responses, and production of flavor-associated metabolites. In higher plants, the LOX family encompasses several isozymes with varying expression patterns between tissues and developmental stages. These affect processes including seed germination, seed storage, seedling growth, fruit ripening, and leaf senescence. LOX family genes have multiple functions in response to hormones such as methyl jasmonate (MeJA) and salicylic acid. RESULTS: In this study, we identified 30 and 95 LOX homologs in Medicago truncatula and Medicago sativa, respectively. These genes were characterized with analyses of their basic physical and chemical properties, structures, chromosomal distributions, and phylogenetic relationships to understand structural variations and their physical locations. Phylogenetic analysis was conducted for members of the three LOX subfamilies (9-LOX, type I 13-LOX, and type II 13-LOX) in Arabidopsis thaliana, Glycine max, M. truncatula, and M. sativa. Analysis of predicted promoter elements revealed several relevant cis-acting elements in MtLOX and MsLOX genes, including abscisic acid (ABA) response elements (ABREs), MeJA response elements (CGTCA-motifs), and antioxidant response elements (AREs). Cis-element data combined with transcriptomic data demonstrated that LOX gene family members in these species were most likely related to abiotic stress responses, hormone responses, and plant development. Gene expression patterns were confirmed via quantitative reverse transcription PCR. Several MtLOX genes (namely MtLOX15, MtLOX16, MtLOX20, and MtLOX24) belonging to the type I 13-LOX subfamily and other LOX genes (MtLOX7, MtLOX11, MsLOX23, MsLOX87, MsLOX90, and MsLOX94) showed significantly different expression levels in the flower tissue, suggesting roles in reproductive growth. Type I 13-LOXs (MtLOX16, MtLOX20, MtLOX21, MtLOX24, MsLOX57, MsLOX84, MsLOX85, and MsLOX94) and type II 13-LOXs (MtLOX5, MtLOX6, MtLOX9, MtLOX10, MsLOX18, MsLOX23, and MsLOX30) were MeJA-inducible and were predicted to function in the jasmonic acid signaling pathway. Furthermore, exogenous MtLOX24 expression in Arabidopsis verified that MtLOX24 was involved in MeJA responses, which may be related to insect-induced abiotic stress. CONCLUSIONS: We identified six and four LOX genes specifically expressed in the flowers of M. truncatula and M. sativa, respectively. Eight and seven LOX genes were induced by MeJA in M. truncatula and M. sativa, and the LOX genes identified were mainly distributed in the type I and type II 13-LOX subfamilies. MtLOX24 was up-regulated at 8 h after MeJA induction, and exogenous expression in Arabidopsis demonstrated that MtLOX24 promoted resistance to MeJA-induced stress. This study provides valuable new information regarding the evolutionary history and functions of LOX genes in the genus Medicago.


Assuntos
Acetatos , Arabidopsis , Ciclopentanos , Medicago truncatula , Oxilipinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago sativa/genética , Estudo de Associação Genômica Ampla , Filogenia , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
2.
BMC Plant Biol ; 24(1): 544, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872112

RESUMO

BACKGROUND: Plant height (PH) is an important agronomic trait influenced by a complex genetic network. However, the genetic basis for the variation in PH in Medicago sativa remains largely unknown. In this study, a comprehensive genome-wide association analysis was performed to identify genomic regions associated with PH using a diverse panel of 220 accessions of M. sativa worldwide. RESULTS: Our study identified eight novel single nucleotide polymorphisms (SNPs) significantly associated with PH evaluated in five environments, explaining 8.59-12.27% of the phenotypic variance. Among these SNPs, the favorable genotype of chr6__31716285 had a low frequency of 16.4%. Msa0882400, located proximal to this SNP, was annotated as phosphate transporter 3;1, and its role in regulating alfalfa PH was supported by transcriptome and candidate gene association analysis. In addition, 21 candidate genes were annotated within the associated regions that are involved in various biological processes related to plant growth and development. CONCLUSIONS: Our findings provide new molecular markers for marker-assisted selection in M. sativa breeding programs. Furthermore, this study enhances our understanding of the underlying genetic and molecular mechanisms governing PH variations in M. sativa.


Assuntos
Estudo de Associação Genômica Ampla , Medicago sativa , Polimorfismo de Nucleotídeo Único , Medicago sativa/genética , Fenótipo , Genes de Plantas , Locos de Características Quantitativas/genética , Genótipo
3.
BMC Plant Biol ; 23(1): 138, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907846

RESUMO

BACKGROUND: Elongation factor 1 A (EF1A), an essential regulator for protein synthesis, has been reported to participate in abiotic stress responses and environmental adaption in plants. However, the role of EF1A in abiotic stress response was barely studied in Medicago truncatula. Here, we identified elongation factor (EF) genes of M. truncatula and studied the salt stress response function of MtEF1A1 (MTR_6g021805). RESULTS: A total of 34 EF genes were identified in the M. truncatula genome. Protein domains and motifs of EFs were highly conserved in plants. MtEF1A1 has the highest expression levels in root nodules and roots, followed by the leaves and stems. Transgenic Arabidopsis thaliana overexpressing MtEF1A1 was more resistant to salt stress treatment, with higher germination rate, longer roots, and more lateral roots than wild type plant. In addition, lower levels of H2O2 and malondialdehyde (MDA) were also detected in transgenic Arabidopsis. Similarly, MtEF1A1 overexpressing M. truncatula was more resistant to salt stress and had lower levels of reactive oxygen species (ROS) in leaves. Furthermore, the expression levels of abiotic stress-responsive genes (MtRD22A and MtCOR15A) and calcium-binding genes (MtCaM and MtCBL4) were upregulated in MtEF1A1 overexpressing lines of M. truncatula. CONCLUSION: These results suggested that MtEF1A1 play a positive role in salt stress regulation. MtEF1A1 may realize its function by binding to calmodulin (CaM) or by participating in Ca2+-dependent signaling pathway. This study revealed that MtEF1A1 is an important regulator for salt stress response in M. truncatula, and provided potential strategy for salt-tolerant plant breeding.


Assuntos
Arabidopsis , Medicago truncatula , Arabidopsis/genética , Medicago truncatula/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Melhoramento Vegetal , Estresse Salino , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
4.
Mol Biol Rep ; 50(12): 10097-10109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910387

RESUMO

BACKGROUND: Filamentation temperature-sensitive H (FtsH) is an AAA+ ATP-dependent protease that plays a vital role in plant environmental adaption and tolerance. However, little is known about the function of the FtsH gene family in the most important legume model plant, Medicago truncatula. METHODS AND RESULTS: To identify and investigate the potential stress adaptation roles of FtsH gene family in M. truncatula, we conducted a series of genome-wide characterization and expression analyses. Totally, twenty MtFtsH genes were identified, which were unevenly distributed across eight chromosomes and classified into six evolution groups based on their phylogenetic relationships, with each group containing similar structures and motifs. Furthermore, MtFtsH genes exhibited a high degree of collinearity and homology with leguminous plants such as alfalfa and soybean. Multiple cis-elements in the upstream region of MtFtsH genes were also identified that responded to light, abiotic stress, and phytohormones. Public RNA-seq data indicated that MtFtsH genes were induced under both salt and drought stresses, and our transcript expression analysis showed that MtFtsH genes of MtFtsH1, MtFtsH2, MtFtsH4, MtFtsH9, and MtFtsH10 were up-regulated after ABA, H2O2, PEG, and NaCl treatments. These results suggest that MtFtsH genes may play a critical role in drought and high salt stress responses and the adaption processes of plants. CONCLUSIONS: This study provides a systematic analysis of FtsH gene family in M. truncatula, serving as a valuable molecular theoretical basis for future functional investigations. Our findings also extend the pool of potential candidate genes for the genetic improvement of abiotic stress tolerance in legume crops.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Temperatura , Filogenia , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768707

RESUMO

The PLATZ family is a novel class of plant-specific zinc finger transcription factors with important roles in plant growth and development and abiotic stress responses. PLATZ members have been identified in many plants, including Oryza sativa, Zea mays, Triticum aestivum, Fagopyrum tataricum, and Arabidopsis thaliana; however, due to the complexity of the alfalfa reference genome, the members of the PLATZ gene family in alfalfa (Medicago sativa L.) have not been systematically identified and analyzed. In this study, 55 Medicago sativa PLATZ genes (MsPLATZs) were identified in the alfalfa "Xinjiangdaye" reference genome. Basic bioinformatic analysis was performed, including the characterization of sequence lengths, protein molecular weights, genomic positions, and conserved motifs. Expression analysis reveals that 7 MsPLATZs are tissue-specifically expressed, and 10 MsPLATZs are expressed in all examined tissues. The transcriptomic expression of these genes is obvious, indicating that these MsPLATZs have different functions in the growth and development of alfalfa. Based on transcriptome data analysis and real-time quantitative PCR (RT-qPCR), we identified 22, 22, and 21 MsPLATZ genes that responded to salt, cold, and drought stress, respectively, with 20 MsPLATZs responding to all three stresses. This study lays a foundation for further exploring the functions of MsPLATZs, and provides ideas for the improvement of alfalfa varieties and germplasm innovation.


Assuntos
Arabidopsis , Medicago sativa , Medicago sativa/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628861

RESUMO

Heat shock transcription factors (HSFs) are important regulatory factors in plant stress responses to various biotic and abiotic stresses and play important roles in growth and development. The HSF gene family has been systematically identified and analyzed in many plants but it is not in the tetraploid alfalfa genome. We detected 104 HSF genes (MsHSFs) in the tetraploid alfalfa genome ("Xinjiangdaye" reference genome) and classified them into three subgroups: 68 in HSFA, 35 in HSFB and 1 in HSFC subgroups. Basic bioinformatics analysis, including genome location, protein sequence length, protein molecular weight and conserved motif identification, was conducted. Gene expression analysis revealed tissue-specific expression for 13 MsHSFs and tissue-wide expression for 28 MsHSFs. Based on transcriptomic data analysis, 21, 11 and 27 MsHSFs responded to drought stress, cold stress and salt stress, respectively, with seven responding to all three. According to RT-PCR, MsHSF27/33 expression gradually increased with cold, salt and drought stress condition duration; MsHSF6 expression increased over time under salt and drought stress conditions but decreased under cold stress. Our results provide key information for further functional analysis of MsHSFs and for genetic improvement of stress resistance in alfalfa.


Assuntos
Medicago sativa , Tetraploidia , Fatores de Transcrição de Choque Térmico/genética , Medicago sativa/genética , Resposta ao Choque Frio/genética , Estresse Salino , Interleucina-6
7.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047244

RESUMO

Alfalfa growth and production in China are negatively impacted by high salt concentrations in soils, especially in regions with limited water supplies. Few reliable genetic markers are currently available for salt tolerance selection. As a result, molecular breeding strategies targeting alfalfa are hindered. Therefore, with the continuous increase in soil salinity in agricultural lands, it is indispensable that a salt-tolerant variety of alfalfa is produced. We collected 220 alfalfa varieties around the world for resequencing and performed genome-wide association studies (GWASs). Alfalfa seeds were germinated in saline water with different concentrations of NaCl, and the phenotypic differences in several key root traits were recorded. In the phenotypic analysis, the breeding status and geographical origin strongly affected the salt tolerance of alfalfa. Forty-nine markers were significantly associated with salt tolerance, and 103 candidate genes were identified based on linkage disequilibrium. A total of 2712 differentially expressed genes were upregulated and 3570 were downregulated based on transcriptomic analyses. Some candidate genes that affected root development in the seed germination stage were identified through the combination of GWASs and transcriptome analyses. These genes could be used for molecular breeding strategies to increase alfalfa's salt tolerance and for further research on salt tolerance in general.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Germinação/genética , Medicago sativa/genética , Melhoramento Vegetal , Estresse Salino/genética
8.
BMC Plant Biol ; 22(1): 295, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705909

RESUMO

BACKGROUND: SQUAMOSA promoter-binding protein-like (SPL) transcription factors are widely present in plants and are involved in signal transduction, the stress response and development. The SPL gene family has been characterized in several model species, such as A. thaliana and G. max. However, there is no in-depth analysis of the SPL gene family in forage, especially alfalfa (Medicago sativa L.), one of the most important forage crops worldwide. RESULT: In total, 76 putative MsSPL genes were identified in the alfalfa genome with an uneven distribution. Based on their identity and gene structure, these MsSPLs were divided into eight phylogenetic groups. Seventy-three MsSPL gene pairs arose from segmental duplication events, and the MsSPLs on the four subgenomes of individual chromosomes displayed high collinearity with the corresponding M. truncatula genome. The prediction of the cis-elements in the promoter regions of the MsSPLs detected two copies of ABA (abscisic acid)-responsive elements (ABREs) on average, implying their potential involvement in alfalfa adaptation to adverse environments. The transcriptome sequencing of MsSPLs in roots and leaves revealed that 54 MsSPLs were expressed in both tissues. Upon salt treatment, three MsSPLs (MsSPL17, MsSPL23 and MsSPL36) were significantly regulated, and the transcription level of MsSPL36 in leaves was repressed to 46.6% of the control level. CONCLUSION: In this study, based on sequence homology, we identified 76 SPL genes in the alfalfa. The SPLs with high identity shared similar gene structures and motifs. In total, 71.1% (54 of 76) of the MsSPLs were expressed in both roots and leaves, and the majority (74.1%) preferred underground tissues to aerial tissues. MsSPL36 in leaves was significantly repressed under salt stress. These findings provide comprehensive information regarding the SPB-box gene family for improve alfalfa tolerance to high salinity.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Ácido Abscísico/metabolismo , Medicago sativa/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética
9.
Mol Biol Rep ; 49(5): 3569-3581, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35118569

RESUMO

BACKGROUND: Homeodomain leucine zipper (HD-ZIP) transcription factors play roles in regulating plant development and responses to abiotic stresses; however, how HD-ZIP genes in Medicago truncatula are involved in abiotic stress response remains elusive. METHODS AND RESULTS: The HD-ZIP I genes in Medicago truncatula were identified and characterized, and their expression patterns in different tissues and under different abiotic stresses were analyzed. A total of 15 Medicago truncatula HD-ZIP I genes were identified and a phylogenetic analysis of HD-ZIP I proteins in Arabidopsis thaliana and Medicago truncatula was conducted. Fifteen HD-ZIP I genes showed diverse tissue preferences. Among them, expressions of MtHB22 and MtHB51 were specially detected in vegetative buds. In addition, they responded to various abiotic stresses, including salinity and osmotic stress and abscisic acid (ABA). For instance, MtHB7 and MtHB12 expression levels were found to be positively associated with salt, osmotic stress and ABA in both shoots and roots, while MtHB13 and MtHB23 were negatively associated with these stresses in Medicago truncatula. CONCLUSION: The HD-ZIP I genes in Medicago truncatula are evolutionarily conserved, but also exhibit gene duplication and gene loss events. Differential expression analysis of Medicago truncatula HD-ZIP I genes indicated their crucial roles in abiotic stress responses. Our genome-wide analysis of the HD-ZIP I transcription factor family in Medicago truncatula provided a valuable reference for further research.


Assuntos
Arabidopsis , Medicago truncatula , Ácido Abscísico/farmacologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077414

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors compose one of the largest families of plant-specific transcription factors; they are widely involved in plant growth and development and have especially important roles in improving stress resistance in plants. However, NAC gene family members in alfalfa (Medicago sativa L.) have not been systematically identified and analyzed genome-wide due to the complexity of the alfalfa reference genome. In this study, a total of 421 M. sativa NAC genes (MsNACs) were identified from the alfalfa "Xinjiangdaye" reference genome. Basic bioinformatics analysis, including characterization of sequence length, protein molecular weight and genome position and conserved motif analysis, was conducted. Expression analysis showed that 47 MsNACs had tissue-specific expression, and 64 MsNACs were expressed in all tissues. The transcriptomic profiles of the genes were very different, indicating that these MsNACs have various functions in alfalfa growth and development. We identified 25, 42 and 47 MsNACs that respond to cold, drought and salt stress based on transcriptome data analysis and real-time quantitative PCR (RT−qPCR). Furthermore, 22 MsNACs were found to respond to both salt and drought stress, and 15 MsNACs were found to respond to cold, salt and drought stress. The results of this study could provide valuable information for further functional analysis of MsNACs and for the improvement of stress resistance in alfalfa.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Secas , Perfilação da Expressão Gênica/métodos , Medicago sativa/genética , Medicago sativa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613873

RESUMO

Salt stress is a worldwide agronomic issue that limits crop yield and quality. Improving salt stress tolerance via genetic modification is the most efficient method to conquer soil salinization problems in crops. Crop miRNAs have been declared to be tightly associated with responding and adapting to salt stress and are advantageous for salt tolerance modification. However, very few studies have validated vital salt tolerance miRNAs and coupled potent target genes in Medicago species, the most economically important forage legume species. In this study, Mtr-miR319a, a miRNA that was identified from the previous next-generation sequencing assay of salt-treated Medicago truncatula, was overexpressed in M. truncatula and Arabidopsis thaliana, inducing the curly leaves and salt stress tolerance phenotypes. Combining the elevated expression level of Mtr-miR319a in the M. truncatula overexpression lines under normal and salt-treatment conditions, the regulatory roles of Mtr-miR319a in leaf development and salt stress adaptation were demonstrated. Several predicted target genes of Mtr-miR319a were also regulated by Mtr-miR319a and were associated with the aforementioned phenotypes in M. truncatula plants, most notably MtTCP4. Our study clarified the functional role of Mtr-miR319a and its target genes in regulating leaf development and defending salt stress, which can help to inform crop breeding efforts for improving salt tolerance via genetic engineering.


Assuntos
Arabidopsis , Medicago truncatula , MicroRNAs , Tolerância ao Sal/genética , Medicago truncatula/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Melhoramento Vegetal , Estresse Salino/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502200

RESUMO

Bioactive gibberellic acids (GAs) are diterpenoid plant hormones that are biosynthesized through complex pathways and control various aspects of growth and development. Although GA biosynthesis has been intensively studied, the downstream metabolic pathways regulated by GAs have remained largely unexplored. We investigated Tnt1 retrotransposon insertion mutant lines of Medicago truncatula with a dwarf phenotype by forward and reverse genetics screening and phylogenetic, molecular, biochemical, proteomic and metabolomic analyses. Three Tnt1 retrotransposon insertion mutant lines of the gibberellin 3-beta-dioxygenase 1 gene (GA3ox1) with a dwarf phenotype were identified, in which the synthesis of GAs (GA3 and GA4) was inhibited. Phenotypic analysis revealed that plant height, root and petiole length of ga3ox1 mutants were shorter than those of the wild type (Medicago truncatula ecotype R108). Leaf size was also much smaller in ga3ox1 mutants than that in wild-type R108, which is probably due to cell-size diminution instead of a decrease in cell number. Proteomic and metabolomic analyses of ga3ox1/R108 leaves revealed that in the ga3ox1 mutant, flavonoid isoflavonoid biosynthesis was significantly up-regulated, while nitrogen metabolism was down-regulated. Additionally, we further demonstrated that flavonoid and isoflavonoid biosynthesis was induced by prohexadione calcium, an inhibitor of GA3ox enzyme, and inhibited by exogenous GA3. In contrast, nitrogen metabolism was promoted by exogenous GA3 but inhibited by prohexadione calcium. The results of this study further demonstrated that GAs play critical roles in positively regulating nitrogen metabolism and transport and negatively regulating flavonoid biosynthesis through GA-mediated signaling pathways in leaves.


Assuntos
Flavonoides/antagonistas & inibidores , Giberelinas/farmacologia , Medicago truncatula/metabolismo , Metaboloma/efeitos dos fármacos , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteoma/análise , Proteoma/metabolismo
13.
J Integr Plant Biol ; 63(11): 1937-1951, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34487430

RESUMO

Alfalfa (Medicago sativa L.) is an important forage crop worldwide. However, little is known about the effects of breeding status and different geographical populations on alfalfa improvement. Here, we sequenced 220 alfalfa core germplasms and determined that Chinese alfalfa cultivars form an independent group, as evidenced by comparisons of FST values between different subgroups, suggesting that geographical origin plays an important role in group differentiation. By tracing the influence of geographical regions on the genetic diversity of alfalfa varieties in China, we identified 350 common candidate genetic regions and 548 genes under selection. We also defined 165 loci associated with 24 important traits from genome-wide association studies. Of those, 17 genomic regions closely associated with a given phenotype were under selection, with the underlying haplotypes showing significant differences between subgroups of distinct geographical origins. Based on results from expression analysis and association mapping, we propose that 6-phosphogluconolactonase (MsPGL) and a gene encoding a protein with NHL domains (MsNHL) are critical candidate genes for root growth. In conclusion, our results provide valuable information for alfalfa improvement via molecular breeding.


Assuntos
Domesticação , Medicago sativa/genética , Seleção Genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Medicago sativa/crescimento & desenvolvimento , Filogeografia , Melhoramento Vegetal , Raízes de Plantas/crescimento & desenvolvimento
14.
BMC Plant Biol ; 20(1): 447, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993512

RESUMO

BACKGROUND: To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves. RESULTS: Based on fold-change thresholds of > 1.20 or < 0.83 (p < 0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. CONCLUSION: Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


Assuntos
Medicago sativa/genética , Medicago sativa/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Fenótipo , Proteômica
15.
Ecotoxicol Environ Saf ; 194: 110435, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32169728

RESUMO

Soil salinization is one of most crucial environmental problems around the world and negatively affects plant growth and production. Carex rigescens is a turfgrass with favorable stress tolerance and great application prospect in salinity soil remediation and utilization; however, the molecular mechanisms behind its salt stress response are unknown. We performed a time-course transcriptome analysis between salt tolerant 'Huanghua' (HH) and salt sensitive 'Beijing' (BJ) genotypes. Physiological changes within 24 h were observed, with the HH genotype exhibiting increased salt tolerance compared to BJ. 5764 and 10752 differentially expressed genes were approved by transcriptome in BJ and HH genotype, respectively, and dynamic analysis showed a discrepant profile between two genotypes. In the BJ genotype, genes related to carbohydrate metabolism and stress response were more active and ABA signal transduction pathway might play a more important role in salt stress tolerance than in HH genotype. In the HH genotype, unique increases in the regulatory network of transcription factors, hormone signal transduction, and oxidation-reduction processes were observed. Moreover, trehalose and pectin biosynthesis and chitin catabolic related genes were specifically involved in the HH genotype, which may have contributed to salt tolerance. Moreover, some candidate genes like mannan endo-1,4-beta-mannosidase and EG45-like domain-containing protein are highlighted for future research about salt stress resistance in C. rigescens and other plant species. Our study revealed unique salt adaptation and resistance characteristics of two C. rigescens genotypes and these findings could help to enrich the currently available knowledge and clarify the detailed salt stress regulatory mechanisms in C. rigescens and other plants.


Assuntos
Carex (Planta)/genética , Transcriptoma , Pequim , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Salinidade , Tolerância ao Sal , Estresse Fisiológico/genética , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979344

RESUMO

Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo-keto reductases (AKRs) can enhance various abiotic stresses resistance by scavenging cytotoxic aldehydes in some plants. However, there are few comprehensive reports of plant AKR genes and their expression patterns in response to abiotic stresses. In this study, we identified 30 putative AKR genes from Medicago truncatula. The gene characteristics, coding protein motifs, and expression patterns of these MtAKRs were analyzed to explore and identify candidate genes in regulation of salt, drought, and ABA stresses. The phylogenetic analysis result indicated that the 52 AKRs in Medicago truncatula and Arabidopsis thaliana can be divided into three groups and six subgroups. Fifteen AKR genes in M. truncatula were randomly selected from each group or subgroup, to investigate their response to salt (200 mM of NaCl), drought (50 g·L-1 of PEG 6000), and ABA (100 µM) stresses in both leaves and roots. The results suggest that MtAKR1, MtAKR5, MtAKR11, MtAKR14, MtAKR20, and MtAKR29 may play important roles in response to these stresses.


Assuntos
Ácido Abscísico/metabolismo , Aldo-Ceto Redutases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/genética , Estresse Salino/genética , Estresse Fisiológico/genética , Aldo-Ceto Redutases/metabolismo , Arabidopsis/genética , Secas , Medicago truncatula/enzimologia , Medicago truncatula/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Regiões Promotoras Genéticas , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia
17.
J Proteome Res ; 18(1): 191-203, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359026

RESUMO

Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.


Assuntos
Antioxidantes/metabolismo , Medicago sativa/fisiologia , Folhas de Planta/fisiologia , Proteômica/métodos , Tolerância ao Sal/efeitos dos fármacos , Açúcares/metabolismo , Antioxidantes/farmacologia , Metabolismo dos Carboidratos , Medicago sativa/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Açúcares/farmacologia
18.
BMC Plant Biol ; 19(1): 165, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029106

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) is an important forage crop grown worldwide. Alfalfa is called the "queen of forage crops" due to its high forage yield and nutritional characteristics. The aim of this study was to undertake quantitative trait loci (QTL) mapping of yield and yield-related traits in an F1 population of two alfalfa varieties that differ in their yield and yield-related traits. RESULTS: We constructed a high-density linkage map using single nucleotide polymorphism (SNP) markers generated by restriction-site associated DNA sequencing (RAD-seq). The linkage map contains 4346 SNP and 119 simple sequence repeat (SSR) markers, with 32 linkage groups for each parent. The average marker distances were 3.00 and 1.32 cM, with coverages of 3455 cM and 4381 cM for paternal and maternal linkage maps, respectively. Using these maps and phenotypic data, we identified a total of 21 QTL for yield and yield components, including five for yield, five for plant height, five for branch number, and six for shoot diameter. Among them, six QTL were co-located for more than one trait. Five QTL explained more than 10% of the phenotypic variation. CONCLUSIONS: We used RAD-seq to construct a linkage map for alfalfa that greatly enhanced marker density compared to previous studies. This high-density linkage map of alfalfa is a useful reference for mapping yield-related traits. Identified yield-related loci could be used to validate their usefulness in developing markers for maker-assisted selection in breeding populations to improve yield potential in alfalfa.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Medicago sativa/genética , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Tetraploidia , Análise de Variância , Cruzamentos Genéticos , Haplótipos/genética , Medicago sativa/anatomia & histologia , Fenótipo , Brotos de Planta/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética
19.
Ecotoxicol Environ Saf ; 168: 127-137, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384160

RESUMO

Carex rigescens is an ornamental turfgrass in northern China which has a relatively low maintenance cost and robust tolerance to many adverse environmental conditions, so it could be considered a new material for researching into plant stress resistance. However, suitable reference genes are vacant for obtaining reliable results in quantitative real-time PCR (qRT-PCR) analysis of C. rigescens in adversity research. In this study, we tested the expression stability of nine potential reference genes in leaves and roots under five different abiotic stress conditions, including cold, salt, heat, osmotic and cadmium (Cd). We then selected the best reference genes according to the analysis results calculated by three algorithmic programs (geNorm, NormFinder and BestKeeper) and used the RankAggreg package to merge the outputted data. The results showed that combinations of at least two reference genes should be used for reliable normalization except in heat-treated root samples, which require three reference genes. eIF-4α, GADPH, SAND and PEPKR1 and their combination were found to be the most stably expressed reference genes, while SAM, TUA-α and UPL7 were the three least stable reference genes among most of experimental samples. In addition, five stress-induced genes (Cu-Zn SOD, P5CS, LEA, GST, and APX) were chosen to verify the stability of the selected reference genes in various tissues and under various stress conditions. The results of this study will provide an important fundamental basis both for gene expression verification for transcriptomic and proteomic analyses and for gene expression analysis for future gene function research in C. rigescens.


Assuntos
Cyperaceae/genética , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Seleção Genética , Transcriptoma
20.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514406

RESUMO

The quality of alfalfa, a main forage legume worldwide, is of great importance for the dairy industry and is affected by the content of triterpene saponins. These natural terpenoid products of triterpene aglycones are catalyzed by squalene synthase (SQS), a highly conserved enzyme present in eukaryotes. However, there is scare information on alfalfa SQS. Here, an open reading frame (ORF) of SQS was cloned from alfalfa. Sequence analysis showed MsSQS had the same exon/intron composition and shared high homology with its orthologs. Bioinformatic analysis revealed the deduced MsSQS had two transmembrane domains. When transiently expressed, GFP-MsSQS fusion protein was localized on the plasma membrane of onion epidermal cells. Removal of the C-terminal transmembrane domain of MsSQS improved solubility in Escherichia coli. MsSQS was preferably expressed in roots, followed by leaves and stems. MeJA treatment induced MsSQS expression and increased the content of total saponins. Overexpression of MsSQS in alfalfa led to the accumulation of total saponins, suggesting a correlation between MsSQS expression level with saponins content. Therefore, MsSQS is a canonical squalene synthase and contributes to saponin synthesis in alfalfa. This study provides a key candidate gene for genetic manipulation of the synthesis of triterpene saponins, which impact both plant and animal health.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Genes de Plantas , Medicago sativa/enzimologia , Medicago sativa/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Membrana Celular/metabolismo , Clonagem Molecular , Ciclopentanos/farmacologia , Escherichia coli/metabolismo , Éxons/genética , Farnesil-Difosfato Farnesiltransferase/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Íntrons/genética , Cebolas/citologia , Oxilipinas/farmacologia , Filogenia , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Domínios Proteicos , Estrutura Secundária de Proteína , Saponinas/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa