Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochemistry (Mosc) ; 86(6): 746-760, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225598

RESUMO

Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Psicológico/fisiopatologia , Barreira Hematoencefálica/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Estresse Psicológico/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769018

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS: To test the impact of innate immune signaling on the changes induced by Aß1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS: We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aß-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.


Assuntos
Doença de Alzheimer/metabolismo , Inflamassomos/metabolismo , Resistência à Insulina/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/metabolismo
3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925080

RESUMO

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Mitocôndrias/fisiologia , Modelos Neurológicos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Animais , Dano ao DNA , DNA Mitocondrial/metabolismo , Humanos , Técnicas In Vitro , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Horm Behav ; 120: 104695, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987898

RESUMO

In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Agressão/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Ocitocina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Comportamento Paterno/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Pai/psicologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Comportamento de Nidação/efeitos dos fármacos , Comportamento Social
5.
Adv Exp Med Biol ; 1147: 147-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147877

RESUMO

Pericytes in the central nervous system attract growing attention of neurobiologists because of obvious opportunities to use them as target cells in numerous brain diseases. Functional activity of pericytes includes control of integrity of the endothelial cell layer, regeneration of vascular cells, and regulation of microcirculation. Pericytes are well integrated in the so-called neurovascular unit (NVU) serving as a platform for effective communications of neurons, astrocytes, endothelial cells, and pericytes. Contribution of pericytes to the establishment and maintaining the structural and functional integrity of blood-brain barrier is confirmed in numerous experimental and clinical studies. The review covers current understandings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in Alzheimer's disease with the special focus on the development of cerebral amyloid angiopathy, deregulation of cerebral angiogenesis, and progression of BBB breakdown seen in Alzheimer's type neurodegeneration.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Pericitos , Astrócitos , Barreira Hematoencefálica , Encéfalo , Humanos
6.
J Neural Transm (Vienna) ; 125(1): 17-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025713

RESUMO

The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.


Assuntos
Corpo Estriado/metabolismo , ADP-Ribose Cíclica/metabolismo , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos
7.
BMC Neurosci ; 18(1): 35, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340569

RESUMO

BACKGROUND: Recent rodent and human studies provide evidence in support of the fact that CD157, well known as bone marrow stromal cell antigen-1 (BST-1) and a risk factor in Parkinson's disease, also meaningfully acts in the brain as a neuroregulator and affects social behaviors. It has been shown that social behaviors are impaired in CD157 knockout mice without severe motor dysfunction and that CD157/BST1 gene single nucleotide polymorphisms are associated with autism spectrum disorder in humans. However, it is still necessary to determine how this molecule contributes to the brain's physiological and pathophysiological functions. METHODS: To gain fresh insights about the relationship between the presence of CD157 in the brain and its enzymatic activity, and aberrant social behavior, CD157 knockout mice of various ages were tested. RESULTS: CD157 immunoreactivity colocalized with nestin-positive cells and elements in the ventricular zones in E17 embryos. Brain CD157 mRNA levels were high in neonates but low in adults. Weak but distinct immunoreactivity was detected in several areas in the adult brain, including the amygdala. CD157 has little or no base exchange activity, but some ADP-ribosyl cyclase activity, indicating that CD157 formed cyclic ADP-ribose but much less nicotinic acid adenine dinucleotide phosphate, with both mobilizing Ca2+ from intracellular Ca2+ pools. Social avoidance in CD157 knockout mice was rescued by a single intraperitoneal injection of oxytocin. CONCLUSIONS: CD157 may play a role in the embryonic and adult nervous systems. The functional features of CD157 can be explained in part through the production of cyclic ADP-ribose rather than nicotinic acid adenine dinucleotide phosphate. Further experiments are required to elucidate how the embryonic expression of CD157 in neural stem cells contributes to behaviors in adults or to psychiatric symptoms.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Encéfalo/enzimologia , Comportamento Social , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Aprendizagem da Esquiva/fisiologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , ADP-Ribose Cíclica/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Modelos Animais , NADP/análogos & derivados , NADP/metabolismo , Nestina/metabolismo , RNA Mensageiro/metabolismo
8.
Rev Neurosci ; 25(1): 97-111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24445236

RESUMO

Connexins (Cx) play an important role in the coordination of intercellular communication, and autocrine and paracrine regulation of cells within the neurovascular unit (NVU). Gap junctional mechanisms control proliferation and differentiation processes underlying neurogenesis and angiogenesis in the brain. Cx43 possesses some unique properties [the ability to form either intercellular channels permeable for regulatory molecules and ions or hemichannels open to the extracellular space to provide release of cell metabolites; functional coupling with nicotinamide adenine dinucleotide (NAD+)-consuming and NAD+-dependent enzymatic processes] which may be of great importance for the fate of the stem cells. Dynamic changes in Cx43 expression are associated with different stages of brain cells development either at embryonic or adult periods of ontogenesis. This review summarizes recent data on Cx43-controlled neurogenesis in the context of NVU development and functioning. Understanding the molecular mechanisms of gap junctional intercellular communication will support translational studies focused on the development of regeneration-based approaches for the therapy of central nervous system pathology.


Assuntos
Encéfalo/citologia , Comunicação Celular/fisiologia , Conexina 43/fisiologia , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Animais , Humanos
9.
Nature ; 446(7131): 41-5, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17287729

RESUMO

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Comportamento Materno/fisiologia , Ocitocina/metabolismo , Comportamento Social , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Amnésia/genética , Amnésia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Feminino , Regulação da Expressão Gênica , Humanos , Injeções , Masculino , Memória/fisiologia , Camundongos , Atividade Motora/fisiologia , Ocitocina/administração & dosagem , Ocitocina/sangue , Ocitocina/farmacologia , Vasopressinas/sangue
10.
Front Psychiatry ; 13: 969674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506430

RESUMO

Background: Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). Aim: To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. Methods: We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. Results: The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. Conclusion: The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.

11.
Front Neurosci ; 16: 858070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873827

RESUMO

Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother's milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.

12.
Biol Pharm Bull ; 34(9): 1369-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21881219

RESUMO

Oxytocin (OXT) in the hypothalamus is the biological basis of social recognition, trust, and bonding. We showed that CD38, a leukaemia cell marker, plays an important role in the hypothalamus in the process of OXT release in adult mice. Disruption of Cd38 (Cd38(-/-)) produced impairment of maternal behavior and male social recognition in mice, similar to the behavior observed in Oxt and OXT receptor (Oxtr) gene knockout (Oxt(-/-) and Oxtr(-/-), respectively) mice. Locomotor activity induced by separation from the dam was higher and the number of ultrasonic vocalization (USV) calls was lower in Cd38(-/-) than Cd38(+/+) pups. These phenotypes seemed to be caused by the high plasma OXT levels during development from neonates to 3-week-old juvenile mice. ADP-ribosyl cyclase activity was markedly lower in the knockout mice from birth, suggesting that weaning for mice is a critical time window of differentiating plasma OXT. Contribution by breastfeeding was an important exogenous source for regulating plasma OXT before weaning by the presence of OXT in milk and the dam's mammary glands. The dissimilarity of Cd38(-/-) infant behaviour to Oxt(-/-) or Oxtr(-/-) mice can be explained partly by this exogenous source of OXT. These results suggest that secretion of OXT into the brain in a CD38-dependent manner may play an important role in the development of social behavior, and mice with OXT signalling deficiency, including Cd38(-/-), Oxt(-/-) and Oxtr(-/-) mice are good animal models for developmental disorders, such as autism.


Assuntos
ADP-Ribosil Ciclase 1/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Ocitocina/metabolismo , ADP-Ribosil Ciclase/metabolismo , Animais , Transtorno Autístico/metabolismo , Camundongos , Camundongos Knockout , Ocitocina/sangue
13.
Physiol Behav ; 235: 113395, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757778

RESUMO

Receptor for advanced glycation end-products (RAGE) is a pattern recognition molecule belonging to the immunoglobulin superfamily, and it plays a role in the remodeling of endothelial cells under pathological conditions. Recently, it was shown that RAGE is a binding protein for oxytocin (OT) and a transporter of OT to the brain on neurovascular endothelial cells via blood circulation. Deletion of the mouse RAGE gene, Ager (RAGE KO), induces hyperactivity in male mice. Impairment of pup care by mother RAGE KO mice after stress exposure results in the death of neonates 1-2 days after pup birth. Therefore, to understand the role of RAGE during the postpartum period, this study aims to examine parental behavior in female RAGE KO mice and ultrasonic vocalizations in pups. RAGE KO mothers without stress before delivery raised their pups and displayed hyperactivity at postpartum day (PPD) 3. KO dams showed impaired retrieval or interaction behavior after additional stress, such as body restraint stress or exposure to a novel environment, but such impaired behavior disappeared at PPD 7. Postnatal day 3 pups emitted ultrasonic vocalizations at >60 kHz as a part of the mother-pup relationship, but the number and category of calls by RAGE KO pups were significantly lower than wild-type pups. The results indicate that RAGE is important in the manifestation of normal parental behavior in dams and for receiving maternal care by mouse pups; moreover, brain OT recruited by RAGE plays a role in damping of signals of additional external stress and endogenous stress during the early postpartum period. Thus, RAGE-dependent OT may be critical for initiating and maintaining the normal mother-child relationship.


Assuntos
Células Endoteliais , Mães , Animais , Feminino , Humanos , Masculino , Comportamento Materno , Camundongos , Período Pós-Parto , Receptor para Produtos Finais de Glicação Avançada/genética
14.
Rev Neurosci ; 32(2): 131-142, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33550784

RESUMO

Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.


Assuntos
Experiências Adversas da Infância , Adulto , Animais , Emoções , Feminino , Humanos , Neurogênese , Plasticidade Neuronal , Gravidez , Estresse Psicológico
15.
Brain Res ; 1752: 147220, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358726

RESUMO

Neuroinflammation has been classified as a trigger of behavioral alterations and cognitive impairments in many neurological conditions, including Alzheimer's disease, major depression, anxiety and others. Regardless of the cause of neuroinflammation, key molecules, which sense neuropathological conditions, are intracellular multiprotein signaling inflammasomes. Increasing evidence shows that the inflammatory response, mediated by activated nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasomes, is associated with the onset and progression of a wide range of diseases of the CNS. However, whether the NLRP3 inflammasome in the CNS is involved in the learning, development of anxiety and adult neurogenesis remains elusive. Therefore, the present study was designed to assess NLRP3 inflammasome contribution in anxiety and reveal its potential involvement in the experimental acquisition of fear responses and hippocampal neurogenesis. Behavioral, immunohistochemical and electrophysiological alterations were measured to evaluate role of neuroinflammation in the limbic system of mice. In this study, we describe interrelated neurophysiological mechanisms, which culminate in absence of NLRP3 inflammasome in young 4 months mice. These include the following: anxious behavior and deterioration in learning and memory of fear conditioning; impairment of adult neurogenesis; reduction and altered morphology of astrocytes in the brain; hyperexcitability in basolateral amygdala (BLA); impaired activation in axons of pyramidal cells of CA1 hippocampal zone in NLRP3 KO mice particularly via the Schaffer collateral pathway; and impaired synaptic transduction in pyramidal cells mediated by an embarrassment of neurotransmitter release from presynaptic site in CA3 hippocampal zone. The present study has demonstrated the novel findings that basal level of NLRP3 inflammasome in the brain of young mice is required for conditioning-induced plasticity in the ventral hippocampus and the basolateral amygdala. The deletion of NLRP3 impair synaptic transduction and caused anxiety-like behavior and labored fear learning, suggesting that low grade inflammation, mediated by NLRP3 expression, play a key role in memory consolidation.


Assuntos
Ansiedade/fisiopatologia , Encefalite/fisiopatologia , Hipocampo/fisiopatologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
16.
Biomedicines ; 9(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34572278

RESUMO

Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.

17.
Front Neurosci ; 14: 618395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519369

RESUMO

Over the past decades, the human life span has dramatically increased, and therefore, a steady increase in diseases associated with age (such as Alzheimer's disease and Parkinson's disease) is expected. In these neurodegenerative diseases, there is a cognitive decline and memory loss, which accompany increased systemic inflammation, the inflamm-aging, and the insulin resistance. Despite numerous studies of age-related pathologies, data on the contribution of brain insulin resistance and innate immunity components to aging are insufficient. Recently, much research has been focused on the consequences of nutrients and adiposity- and nutrient-related signals in brain aging and cognitive decline. Moreover, given the role of metainflammation in neurodegeneration, lifestyle interventions such as calorie restriction may be an effective way to break the vicious cycle of metainflammation and have a role in social behavior. The various effects of calorie restriction on metainflammation, insulin resistance, and neurodegeneration have been described. Less attention has been paid to the social determinants of aging and the possible mechanism by which calorie restriction might influence social behavior. The purpose of this review is to discuss current knowledge in the interdisciplinary field of geroscience-immunosenescence, inflamm-aging, and metainflammation-which makes a significant contribution to aging. A substantial part of the review is devoted to frontiers in the brain insulin resistance in relation to neuroinflammation. In addition, we summarize new data on potential mechanisms of calorie restriction that influence as a lifestyle intervention on the social brain. This knowledge can be used to initiate successful aging and slow the onset of neurodegenerative diseases.

18.
Front Immunol ; 11: 585294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304350

RESUMO

Ectoenzyme and receptor BST-1/CD157 has been considered as a key molecule involved in the regulation of functional activity of cells in various tissues and organs. It is commonly accepted that CD157 catalyzes NAD+ hydrolysis and acts as a component of integrin adhesion receptor complex. Such properties are important for the regulatory role of CD157 in neuronal and glial cells: in addition to recently discovered role in the regulation of emotions, motor functions, and social behavior, CD157 might serve as an important component of innate immune reactions in the central nervous system. Activation of innate immune system in the brain occurs in response to infectious agents as well as in brain injury and neurodegeneration. As an example, in microglial cells, association of CD157 with CD11b/CD18 complex drives reactive gliosis and neuroinflammation evident in brain ischemia, chronic neurodegeneration, and aging. There are various non-substrate ligands of CD157 belonging to the family of extracellular matrix proteins (fibronectin, collagen I, finbrinogen, and laminin) whose activity is required for controlling cell adhesion and migration. Therefore, CD157 could control structural and functional integrity of the blood-brain barrier and barriergenesis. On the other hand, contribution of CD157 to the regulation of brain development is rather possible since in the embryonic brain, CD157 expression is very high, whereas in the adult brain, CD157 is expressed on neural stem cells and, presumably, is involved in the neurogenesis. Besides, CD157 could mediate astrocytes' action on neural stem and progenitor cells within neurogenic niches. In this review we will summarize how CD157 may affect brain plasticity acting as a molecule at the crossroad of neurogenesis, cerebral angiogenesis, and immune regulation.


Assuntos
ADP-Ribosil Ciclase/imunologia , Antígenos CD/imunologia , Encéfalo/imunologia , Encéfalo/fisiopatologia , Plasticidade Neuronal/imunologia , Animais , Proteínas Ligadas por GPI/imunologia , Humanos
19.
J Neurosci Methods ; 335: 108616, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007483

RESUMO

Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.


Assuntos
Realidade Virtual , Animais , Memória , Plasticidade Neuronal , Roedores , Interface Usuário-Computador
20.
PLoS One ; 15(12): e0244022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326496

RESUMO

The ability of CD38 and CD157 to utilize nicotinamide adenine dinucleotide (NAD) has received much attention because the aging-induced elevation of CD38 expression plays a role in the senescence-related decline in NAD levels. Therefore, it is of interest to examine and compare the effects of age-associated changes on the general health and brain function impairment of Cd157 and Cd38 knockout (CD157 KO and CD38 KO) mice. The body weight and behaviors were measured in 8-week-old (young adult) or 12-month-old (middle-aged) male mice of both KO strains. The locomotor activity, anxiety-like behavior, and social behavior of the mice were measured in the open field and three-chamber tests. The middle-aged CD157 KO male mice gained more body weight than young adult KO mice, while little or no body weight gain was observed in the middle-aged CD38 KO mice. Middle-aged CD157 KO mice displayed increased anxiety-like behavior and decreased sociability and interaction compared with young adult KO mice. Middle-aged CD38 KO mice showed less anxiety and hyperactivity than CD157 KO mice, similar to young adult CD38 KO mice. The results reveal marked age-dependent changes in male CD157 KO mice but not in male CD38 KO mice. We discuss the distinct differences in aging effects from the perspective of inhibition of NAD metabolism in CD157 and CD38 KO mice, which may contribute to differential behavioral changes during aging.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase/genética , Envelhecimento/genética , Antígenos CD/genética , Glicoproteínas de Membrana/genética , Fenótipo , Comportamento Social , Envelhecimento/fisiologia , Animais , Peso Corporal , Proteínas Ligadas por GPI/genética , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa