Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205200

RESUMO

Theobroma cacao plantations are of significant economic importance worldwide, primarily for chocolate production. During the harvest and processing of cocoa beans, they are subjected to fermentation either by microorganisms present in the environment (spontaneous fermentation) or the addition of starter cultures, with different strains directly contributing distinct flavor and color characteristics to the beans. In addition to fungi and bacteria, viruses are ubiquitous and can affect the quality of the fermentation process by infecting fermenting organisms, destabilizing microbial diversity, and consequently affecting fermentation quality. Therefore, in this study, we explored publicly available metatranscriptomic libraries of cocoa bean fermentation in Limon Province, Costa Rica, looking for viruses associated with fermenting microorganisms. Libraries were derived from the same sample at different time points: 7, 20, and 68 h of fermentation, corresponding to yeast- and lactic acid bacteria-driven phases. Using a comprehensive pipeline, we identified 68 viral sequences that could be assigned to 62 new viral species and 6 known viruses distributed among at least nine families, with particular abundance of elements from the Lenarviricota phylum. Interestingly, 44 of these sequences were specifically associated with ssRNA phages (Fiersviridae) and mostly fungi-infecting viral families (Botourmiaviridae, Narnaviridae, and Mitoviridae). Of note, viruses from those families show a complex evolutionary relationship, transitioning from infecting bacteria to infecting fungi. We also identified 10 and 3 viruses classified within the Totiviridae and Nodaviridae families, respectively. The quantification of the virus-derived RNAs shows a general pattern of decline, similar to the dynamic profile of some microorganism genera during the fermentation process. Unexpectedly, we identified narnavirus-related elements that showed similarity to segmented viral species. By exploring the molecular characteristics of these viral sequences and applying Hidden Markov Models, we were capable of associating these additional segments with a specific taxon. In summary, our study elucidates the complex virome associated with the microbial consortia engaged in cocoa bean fermentation that could contribute to organism/strain selection, altering metabolite production and, consequently, affecting the sensory characteristics of cocoa beans.


Assuntos
Cacau , Fermentação , Viroma , Cacau/virologia , Cacau/microbiologia , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Fungos/virologia , Fungos/genética , Fungos/classificação , Filogenia , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Costa Rica , Bactérias/genética , Bactérias/classificação , Bactérias/virologia , Metagenômica , Genoma Viral
2.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766257

RESUMO

This study reports the virome investigation of pollinator species and other floral visitors associated with plants from the south of Bahia: Aphis aurantii, Atrichopogon sp., Dasyhelea sp., Forcipomyia taiwana, and Trigona ventralis hoozana. Studying viruses in insects associated with economically important crops is vital to understand transmission dynamics and manage viral diseases that pose as threats for global food security. Using literature mining and public RNA next-generation sequencing data deposited in the NCBI SRA database, we identified potential vectors associated with Malvaceae plant species and characterized the microbial communities resident in these insects. Bacteria and Eukarya dominated the metagenomic analyses of all taxon groups. We also found sequences showing similarity to elements from several viral families, including Bunyavirales, Chuviridae, Iflaviridae, Narnaviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, and Xinmoviridae. Phylogenetic analyses indicated the existence of at least 16 new viruses distributed among A. aurantii (3), Atrichopogon sp. (4), Dasyhelea sp. (3), and F. taiwana (6). No novel viruses were found for T. ventralis hoozana. For F. taiwana, the available libraries also allowed us to suggest possible vertical transmission, while for A. aurantii we followed the infection profile along the insect development. Our results highlight the importance of studying the virome of insect species associated with crop pollination, as they may play a crucial role in the transmission of viruses to economically important plants, such as those of the genus Theobroma, or they will reduce the pollination process. This information may be valuable in developing strategies to mitigate the spread of viruses and protect the global industry.


Assuntos
Viroma , Vírus , Humanos , Abelhas , Animais , Filogenia , Insetos , Vírus/genética , Produtos Agrícolas
3.
Gut Microbes ; 15(2): 2249146, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37668317

RESUMO

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , Camundongos , SARS-CoV-2 , Antibacterianos , Progressão da Doença
4.
Front Microbiol ; 13: 874319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992690

RESUMO

Agroforestry systems (AFS) for cocoa production combine traditional land-use practices with local biodiversity conservation, resulting in both ecological and agricultural benefits. The cacao-cabruca AFS model is widely implemented in regions of the Brazilian Atlantic Forest. Carpotroche brasiliensis (Raddi) A. Gray (Achariaceae) is a tree found in cabruca landscapes that is often used for reforestation and biotechnological applications. Despite its importance, we still lack information about viruses circulating in C. brasiliensis, particularly considering the possibility of spillover that could affect cocoa production. In our study, we analyzed the Carpotroche brasiliensis virome from Atlantic Forest and cacao-cabruca AFS regions using metatranscriptomics from several vegetative and reproductive organs. Our results revealed a diverse virome detecting near-complete or partial coding sequences of single- and double-stranded DNA and RNA viruses classified into at least six families (Botourmiaviridae, Bromoviridae, Caulimoviridae, Genomoviridae, Mitoviridae, and Rhabdoviridae) plus unclassified elements. We described with high confidence the near-complete and the partial genomes of two tentative novel viruses: Carpotroche-associated ilarvirus and Carpotroche-associated genomovirus, respectively. Interestingly, we also described sequences likely derived from a rhabdovirus, which could represent a novel member of the genus Gammanucleorhabdovirus. We observed higher viral diversity in cacao-cabruca AFS and reproductive organs of C. brasiliensis with preferential tropism to fruits, which could directly affect production. Altogether, our results provide data to better understand the virome in this unexplored agroecological interface, such as cacao-cabruca AFS and forest ecosystem, providing information on the aspects of virus-plant interactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa