Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 108: 104552, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33357981

RESUMO

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4'-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavonoides/química , Glicogênio Fosforilase/metabolismo , Humanos , Hipoglicemiantes/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa