Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 56(12): 7544-7552, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549252

RESUMO

Environmental health sciences (EHS) span many diverse disciplines. Within the EHS community, the National Institute of Environmental Health Sciences Superfund Research Program (SRP) funds multidisciplinary research aimed to address pressing and complex issues on how people are exposed to hazardous substances and their related health consequences with the goal of identifying strategies to reduce exposures and protect human health. While disentangling the interrelationships that contribute to environmental exposures and their effects on human health over the course of life remains difficult, advances in data science and data sharing offer a path forward to explore data across disciplines to reveal new insights. Multidisciplinary SRP-funded teams are well-positioned to examine how to best integrate EHS data across diverse research domains to address multifaceted environmental health problems. As such, SRP supported collaborative research projects designed to foster and enhance the interoperability and reuse of diverse and complex data streams. This perspective synthesizes those experiences as a landscape view of the challenges identified while working to increase the FAIR-ness (Findable, Accessible, Interoperable, and Reusable) of EHS data and opportunities to address them.


Assuntos
Saúde Ambiental , National Institute of Environmental Health Sciences (U.S.) , Exposição Ambiental , Substâncias Perigosas , Humanos , Estados Unidos
2.
Environ Sci Technol ; 50(12): 6556-64, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27223406

RESUMO

Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important.


Assuntos
Cadeia Alimentar , Insetos , Animais , Arseniatos , Ecossistema , Água Doce
3.
Environ Health Perspect ; 132(1): 15002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227347

RESUMO

BACKGROUND: Due to the physical, metabolic, and hormonal changes before, during, and after pregnancy, women-defined here as people assigned female at birth-are particularly susceptible to environmental insults. Racism, a driving force of social determinants of health, exacerbates this susceptibility by affecting exposure to both chemical and nonchemical stressors to create women's health disparities. OBJECTIVES: To better understand and address social and structural determinants of women's health disparities, the National Institute of Environmental Health Sciences (NIEHS) hosted a workshop focused on the environmental impacts on women's health disparities and reproductive health in April 2022. This commentary summarizes foundational research and unique insights shared by workshop participants, who emphasized the need to broaden the definition of the environment to include upstream social and structural determinants of health. We also summarize current challenges and recommendations, as discussed by workshop participants, to address women's environmental and reproductive health disparities. DISCUSSION: The challenges related to women's health equity, as identified by workshop attendees, included developing research approaches to better capture the social and structural environment in both human and animal studies, integrating environmental health principles into clinical care, and implementing more inclusive publishing and funding approaches. Workshop participants discussed recommendations in each of these areas that encourage interdisciplinary collaboration among researchers, clinicians, funders, publishers, and community members. https://doi.org/10.1289/EHP12996.


Assuntos
Saúde Ambiental , Equidade em Saúde , Estados Unidos , Animais , Recém-Nascido , Gravidez , Feminino , Humanos , National Institute of Environmental Health Sciences (U.S.) , Editoração , Desigualdades de Saúde
4.
Artigo em Inglês | MEDLINE | ID: mdl-36429393

RESUMO

Approximately 2000 official and potential Superfund sites are located within 25 miles of the East or Gulf coasts, many of which will be at risk of flooding as sea levels rise. More than 60 million people across the United States live within 3 miles of a Superfund site. Disentangling multifaceted environmental health problems compounded by climate change requires a multidisciplinary systems approach to inform better strategies to prevent or reduce exposures and protect human health. The purpose of this minireview is to present the National Institute of Environmental Health Sciences Superfund Research Program (SRP) as a useful model of how this systems approach can help overcome the challenges of climate change while providing flexibility to pivot to additional needs as they arise. It also highlights broad-ranging SRP-funded research and tools that can be used to promote health and resilience to climate change in diverse contexts.


Assuntos
Mudança Climática , Pesquisa Interdisciplinar , Estados Unidos , Humanos , Promoção da Saúde , National Institute of Environmental Health Sciences (U.S.) , Saúde Ambiental , Substâncias Perigosas
5.
Rev Environ Health ; 36(4): 451-457, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32862150

RESUMO

The National Institute of Environmental Health Sciences Superfund Research Program (SRP) funds diverse transdisciplinary research to understand how hazardous substances contribute to disease. SRP research focuses on how to prevent these exposures by promoting problem-based, solution-oriented research. SRP's mandate areas encompasses broad biomedical and environmental science and engineering research efforts and, when combined with research translation, community engagement, training, and data science, offers broad expertise and unique perspectives directed at a specific big picture question. The purpose of this commentary is to adapt a systems approach concept to SRP research to accommodate the complexity of a scientific problem. The SRP believes a systems approach offers a framework to understand how scientists can work together to integrate diverse fields of research to prevent or understand environmentally-influenced human disease by addressing specific questions that are part of a larger perspective. Specifically, within the context of the SRP, a systems approach can elucidate the complex interactions between factors that contribute to or protect against environmental insults. Leveraging a systems approach can continue to advance SRP science while building the foundation for researchers to address difficult emerging environmental health problems.


Assuntos
Saúde Ambiental , National Institute of Environmental Health Sciences (U.S.) , Substâncias Perigosas , Humanos , Pesquisa Interdisciplinar , Análise de Sistemas , Estados Unidos
6.
Rev Environ Health ; 35(2): 85-109, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32543458

RESUMO

The National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS) Hazardous Substances Basic Research and Training Program [Superfund Research Program (SRP)] funds transdisciplinary research projects spanning the biomedical and environmental sciences to address issues related to potentially hazardous substances. We used a case study approach to identify how SRP-funded basic biomedical research has had an impact on society. We examined how transdisciplinary research projects from the SRP have advanced knowledge and led to additional clinical, public health, policy, and economic benefits. SRP basic biomedical research findings have contributed to the body of knowledge and influenced a broad range of scientific disciplines. It has informed the development of policies and interventions to reduce exposure to environmental contaminants to improve public health. Research investments by the SRP have had a significant impact on science, health, and society. Documenting the benefits of these investments provides insight into how basic research is translated to real-world applications.


Assuntos
Saúde Ambiental/estatística & dados numéricos , Substâncias Perigosas/efeitos adversos , Pesquisa Interdisciplinar/estatística & dados numéricos , Humanos , National Institute of Environmental Health Sciences (U.S.) , Estados Unidos
7.
Rev Environ Health ; 35(2): 111-122, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32126018

RESUMO

The National Institute of Environmental Health Sciences (NIEHS) Superfund Basic Research and Training Program (SRP) funds a wide range of projects that span biomedical, environmental sciences, and engineering research and generate a wealth of data resulting from hypothesis-driven research projects. Combining or integrating these diverse data offers an opportunity to uncover new scientific connections that can be used to gain a more comprehensive understanding of the interplay between exposures and health. Integrating and reusing data generated from individual research projects within the program requires harmonization of data workflows, ensuring consistent and robust practices in data stewardship, and embracing data sharing from the onset of data collection and analysis. We describe opportunities to leverage data within the SRP and current SRP efforts to advance data sharing and reuse, including by developing an SRP dataset library and fostering data integration through Data Management and Analysis Cores. We also discuss opportunities to improve public health by identifying parallels in the data captured from health and engineering research, layering data streams for a more comprehensive picture of exposures and disease, and using existing SRP research infrastructure to facilitate and foster data sharing. Importantly, we point out that while the SRP is in a unique position to exploit these opportunities, they can be employed across environmental health research. SRP research teams, which comprise cross-disciplinary scientists focused on similar research questions, are well positioned to use data to leverage previous findings and accelerate the pace of research. Incorporating data streams from different disciplines addressing similar questions can provide a broader understanding and uncover the answers to complex and discrete research questions.


Assuntos
Saúde Ambiental/estatística & dados numéricos , Substâncias Perigosas/efeitos adversos , Disseminação de Informação , Pesquisa Interdisciplinar/estatística & dados numéricos , National Institute of Environmental Health Sciences (U.S.) , Exposição Ambiental , Humanos , Saúde Pública , Estados Unidos
8.
Environ Toxicol Chem ; 37(3): 903-913, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29095518

RESUMO

Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 µg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22 mg kg-1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms were fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6 mg kg-1 dry wt, respectively) were observed, revealing significant biodilution (∼ 10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers. Environ Toxicol Chem 2018;37:903-913. © 2017 SETAC.


Assuntos
Arsênio/análise , Perifíton , Aerobiose , Animais , Ephemeroptera/fisiologia , Larva/fisiologia , Soluções , Poluentes Químicos da Água/análise , Espectroscopia por Absorção de Raios X
9.
Environ Pollut ; 224: 82-88, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28216132

RESUMO

Arsenic is an important environmental pollutant whose speciation and mobility in freshwater food webs is complex. Few studies have characterized uptake and efflux rates of arsenic in aquatic benthic invertebrates. Further, we lack a fundamental understanding of how pH influences uptake kinetics in these organisms or how this key environmental variable could alter dietary exposure for primary consumers. Here we used a radiotracer approach to characterize arsenate accumulation dynamics in benthic invertebrates, the influence of pH on uptake in a subset of these organisms, and the influence of pH on uptake of arsenate by periphyton - an important food source at the base of aquatic food webs. Uptake rate constants (Ku) from aqueous exposure were modest, ranging from ∼0.001 L g-1d-1 in three species of mayfly to 0.06 L g-1d-1in Psephenus herricki. Efflux rate constants ranged from ∼0.03 d-1 in Corbicula fluminea to ∼0.3 d-1 in the mayfly Isonychia sp, and were generally high. Arsenate uptake decreased with increasing pH, which may be a function of increased adsorption at lower pHs. A similar but much stronger correlation was observed for periphyton where Ku decreased from ∼3.0 L g-1d-1 at 6.5 pH to ∼0.7 L g-1d-1 at 8.5 pH, suggesting that site specific pH could significantly alter arsenic exposure, particularly for primary consumers. Together, these findings shed light on the complexity of arsenic bioavailability and help explain observed differences reported in the literature.


Assuntos
Arsênio/análise , Água Doce/química , Insetos/química , Invertebrados/química , Animais , Corbicula/química , Ephemeroptera/química , Cadeia Alimentar , Cinética , Especificidade da Espécie , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa