Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(1): 211-219, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36562662

RESUMO

Hybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol-gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Preparações de Ação Retardada , Dióxido de Silício/química , Ibuprofeno , Campos Magnéticos , Nanopartículas/química
2.
Small ; 18(28): e2106762, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35689307

RESUMO

Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef  is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd  ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.


Assuntos
Magnetismo , Nanopartículas , Anisotropia , Cobalto , Transição de Fase
3.
Nano Lett ; 21(16): 6923-6930, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34370953

RESUMO

Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles.

4.
Nano Lett ; 18(9): 5854-5861, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30165026

RESUMO

The atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel Fe3O4/Mn3O4 core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope. Electron energy-loss spectroscopy (EELS) measurements performed with atomic resolution allow the direct mapping of the Mn2+/Mn3+ ions in the shell and the Fe2+/Fe3+ in the core structure. This enables a precise understanding of the core-shell interface and of the cation distribution in the crystalline lattice of the nanoparticles. Considering how the different oxidation states of transition metals are reflected in EELS, two methods of performing a local evaluation of the cation inversion in spinel lattices are introduced. Both methods allow the determination of the inversion parameter in the iron oxide core and manganese oxide shell, as well as detecting spatial variations in this parameter, with atomic resolution. X-ray absorption measurements on the whole sample confirm the presence of cation inversion. These results present a significant advance toward a better correlation of the structural and functional properties of nanostructured spinel oxides.

5.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323449

RESUMO

Nonlinear optical nanostructured materials are gaining increased interest as optical limiters for various applications, although many of them suffer from reduced efficiencies at high-light fluences due to photoinduced deterioration. The nonlinear optical properties of ferrite core/shell nanoparticles showing their robustness for ultrafast optical limiting applications are reported. At 100 fs ultrashort laser pulses the effective two-photon absorption (2PA) coefficient shows a nonmonotonic dependence on the shell thickness, with a maximum value obtained for thin shells. In view of the local electric field confinement, this indicates that core/shell is an advantageous morphology to improve the nonlinear optical parameters, exhibiting excellent optical limiting performance with effective 2PA coefficients in the range of 10-12 cm W-1 (100 fs excitation), and optical limiting threshold fluences in the range of 1.7 J cm-2 . These values are comparable to or better than most of the recently reported optical limiting materials. The quality of the open aperture Z-scan data recorded from repeat measurements at intensities as high as 35 TW cm-2 , indicates their considerably high optical damage thresholds in a toluene dispersion, ensuring their robustness in practical applications. Thus, the high photostability combined with the remarkable nonlinear optical properties makes these nanoparticles excellent candidates for ultrafast optical limiting applications.

6.
Small ; 14(30): e1800804, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29952138

RESUMO

Understanding the microstructure in heterostructured nanoparticles is crucial to harnessing their properties. Although microscopy is ideal for this purpose, it allows for the analysis of only a few nanoparticles. Thus, there is a need for structural methods that take the whole sample into account. Here, a novel bulk-approach based on the combined analysis of synchrotron X-ray powder diffraction with whole powder pattern modeling, Rietveld and pair distribution function is presented. The microstructural temporal evolution of FeO/Fe3 O4 core/shell nanocubes is studied at different time intervals. The results indicate that a two-phase approach (FeO and Fe3 O4 ) is not sufficient to successfully fit the data and two additional interface phases (FeO and Fe3 O4 ) are needed to obtain satisfactory fits, i.e., an onion-type structure. The analysis shows that the Fe3 O4 phases grow to some extent (≈1 nm) at the expense of the FeO core. Moreover, the FeO core progressively changes its stoichiometry to accommodate more oxygen. The temporal evolution of the parameters indicates that the structure of the FeO/Fe3 O4 nanocubes is rather stable, although the exact interface structure slightly evolves with time. This approach paves the way for average studies of interfaces in different kinds of heterostructured nanoparticles, particularly in cases where spectroscopic methods have some limitations.

7.
Small ; 14(15): e1703963, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29479814

RESUMO

Although cubic rock salt-CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende-CoO phase is antiferromagnetic with a 3rd type structure in a face-centered cubic lattice and a Néel temperature of TN (zinc-blende) ≈225 K. Wurtzite-CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c-axis but an incommensurate order along the y-axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic-like behavior even at room temperature.

8.
Small ; 14(24): e1800868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29761629

RESUMO

A crucial challenge in nanotherapies is achieving accurate and real-time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic-induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60-fold smaller than state-of-the-art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real-time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state-of-the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.

9.
Nano Lett ; 16(8): 5068-73, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27383904

RESUMO

The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.

10.
Microsc Microanal ; 20(3): 698-705, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24750576

RESUMO

Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space.

11.
Dalton Trans ; 53(18): 7971-7984, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38647324

RESUMO

We have prepared a bis(compartmental) Mannich base ligand H4L (1,4,8,11-tetraaza-1,4,8,11-tetrakis(2-hydroxy-3-methoxy-5-methylbenzyl)cyclotetradecane) specifically designed to obtain bis(TMIILnIII) tetranuclear complexes (TM = transition metal). In this regard, we have succeeded in obtaining three new complexes of the formula [Zn2(µ-L)(µ-OAc)Dy2(NO3)2]·[Zn2(µ-L)(µ-OAc)Dy2(NO3)(OAc)]·4CHCl3·2MeOH (1) and [TM2(µ-H2L)2(µ-succinate)Ln2(NO3)2] (NO3)2·2H2O·6MeOH (TMII = Zn, LnIII = Dy (2); TMII = Co, LnIII = Dy (3)). Compound 1 contains two different bis(ZnDy) tetranuclear molecules that cocrystallize in the structure, in which acetato bridging ligands connect the ZnII and DyIII ions within each ZnDy subunit. This compound does not exhibit slow magnetic relaxation at zero field, but it is activated in the presence of an applied dc magnetic field and/or by Dy/Y magnetic dilution, showing two relaxation processes corresponding to each of the two different bis(ZnDy) units found in the structure. As revealed by the theoretical calculations, magnetic relaxation in 1 is single-ion in origin and takes place through the first excited state of each DyIII ion. When using the succinato dicarboxylate bridging ligand instead of acetate, compounds 2 and 3 were serendipitously formed, which have a closed structure with the succinate anion bridging two ZnDy subunits belonging to two different ligands. It should be noted that only compound 2 exhibits slow relaxation of magnetization in the absence of an external magnetic field. According to experimental and theoretical data, 2 relaxes through the second excited Kramers doublet (Ueff = 342 K). In contrast, 3 displays field-induced SMM behaviour (Ueff = 203 K). However, the Co/Zn diluted version of this compound 3Zn shows slow relaxation at zero field (Ueff = 347 K). Ab initio theoretical calculations clearly show that the weak ferromagnetic coupling between CoII and DyIII ions is at the origin of the lack of slow relaxation of this compound at zero field. Compound 2 and its diluted analogues 2Y and 3Zn show hysteresis loops at very low temperature, thus confirming their SMM behaviour. Finally, compounds 1 and 2 show DyIII based emission even at room temperature that, in the case of 2, allows us to extract the splitting of the ground 6H15/2 term, which matches reasonably well with theoretical calculations.

12.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903700

RESUMO

The development of novel magnetic core-shell nanoparticles has become increasingly appealing in recent years [...].

13.
ACS Appl Nano Mater ; 5(10): 14871-14881, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36338325

RESUMO

In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.

14.
J Am Chem Soc ; 133(42): 16738-41, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21973012

RESUMO

Magnetic multilayered, onion-like, heterostructured nanoparticles are interesting model systems for studying magnetic exchange coupling phenomena. In this work, we synthesized heterostructured magnetic nanoparticles composed of two, three, or four components using iron oxide seeds for the subsequent deposition of manganese oxide. The MnO layer was allowed either to passivate fully in air to form an outer layer of Mn(3)O(4) or to oxidize partially to form MnO|Mn(3)O(4) double layers. Through control of the degree of passivation of the seeds, particles with up to four different magnetic layers can be obtained (i.e., FeO|Fe(3)O(4)|MnO|Mn(3)O(4)). Magnetic characterization of the samples confirmed the presence of the different magnetic layers.

15.
J Am Chem Soc ; 132(27): 9398-407, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20568759

RESUMO

The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly gamma-Mn(2)O(3) shell, larger ones have increasing amounts of Mn(3)O(4). A considerable enhancement of the Néel temperature, T(N), and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains.

16.
Light Sci Appl ; 9: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257180

RESUMO

Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring. This hybridization results in a low-radiant multipolar Fano resonance that drives a strongly enhanced magneto-optically induced localized plasmon. The large amplification of the magneto-optical response of the nanocavity is the result of the large magneto-optically induced change in light polarization produced by the strongly enhanced radiant magneto-optical dipole, which is achieved by avoiding the simultaneous enhancement of re-emitted light with incident polarization by the multipolar Fano resonance. The partial compensation of the magneto-optically induced polarization change caused by the large re-emission of light with the original polarization is a critical limitation of the magnetoplasmonic designs explored thus far and that is overcome by the approach proposed here.

17.
Chem Sci ; 10(7): 2171-2178, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30881641

RESUMO

Atomic layer deposition is a chemical deposition technology that provides ultimate control over the conformality of films and their thickness, even down to Ångström-scale precision. Based on the marked superficial character and gas phase process of the technique, metal sources and their ligands shall ideally be highly volatile. However, in numerous cases those ligands corrode the substrate or compete for adsorption sites, well-known as side reactions of these processes. Therefore, the ability to control such side reactions might be of great interest, since it could achieve synchronous coating and alteration of a substrate in one process, saving time and energy otherwise needed for a post-treatment of the sample. Consequently, advances in this way must require understanding and control of the chemical processes that occur during the coating. In this work, we show how choosing an appropriate ligand of the metal source can unveil a novel approach to concertedly coat and reduce γ-Fe2O3 nanoparticles to form a final product composed of Fe3O4/TiO2 core/shell nanoparticles. To this aim, we envisage that appropriate design of precursors and selection of substrates will pave the way for numerous new compositions, while the ALD process itself allows for easy upscaling to large amounts of coated and reduced particles for industrial use.

18.
ACS Nano ; 13(7): 7716-7728, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31173684

RESUMO

The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like, for example, biomedicine. Therefore, having an accurate control over the nanoparticle shape and size, while preserving the crystallinity, becomes crucial for many applications. However, despite the increasing interest in spinel oxide nanocubes there are relatively few studies on this morphology due to the difficulty to synthesize perfectly defined cubic nanostructures, especially below 20 nm. Here we present a rationally designed synthesis pathway based on the thermal decomposition of iron(III) acetylacetonate to obtain high quality nanocubes over a wide range of sizes. This pathway enables the synthesis of monodisperse Fe3O4 nanocubes with edge length in the 9-80 nm range, with excellent cubic morphology and high crystallinity by only minor adjustments in the synthesis parameters. The accurate size control provides evidence that even 1-2 nm size variations can be critical in determining the functional properties, for example, for improved nuclear magnetic resonance T2 contrast or enhanced magnetic hyperthermia. The rationale behind the changes introduced in the synthesis procedure (e.g., the use of three solvents or adding Na-oleate) is carefully discussed. The versatility of this synthesis route is demonstrated by expanding its capability to grow other spinel oxides such as Co-ferrites, Mn-ferrites, and Mn3O4 of different sizes. The simplicity and adaptability of this synthesis scheme may ease the development of complex oxide nanocubes for a wide variety of applications.

19.
Nanoscale ; 10(39): 18672-18679, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30265263

RESUMO

The combination of magnetic and plasmonic materials and their nanostructurization have revealed a prominent pathway to develop novel photonic materials for the active control of the light polarization using a magnetic field. Until now, physical growth methods have been the only exploitable approach to prepare these types of nanostructures. Here, we demonstrate the chemical synthesis of magneto-plasmonic core/shell nanocrystals with enhanced magnetic control of optical properties comparable to the best results reported for nanostructure growth by physical methods. Ag/FeCo core/shell nanocrystals were synthesized using a combination of hot injection and polyol approaches, demonstrating that the well-defined structures of both components, their interface and the optimized morphology, where the plasmonic and magnetic components are placed in the core and the shell regions, are responsible for the observed large enhancement of magnetic control of light polarization. Therefore, there is a possibility to develop tunable magneto-optical materials from hybrid magneto-plasmonic structures synthesized by chemical methods.

20.
Ultramicroscopy ; 185: 42-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29182918

RESUMO

In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from Fe3O4/Mn3O4 core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra. A second approach is to analyze spectral variance with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on PCA score maps is discussed. The advantages and requirements of each approach are studied. Results demonstrate how clustering is able to recover compositional and oxidation state information from EELS data with minimal user input, giving great prospects for its usage in EEL spectroscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa