Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 51(51): 10137-46, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23193948

RESUMO

PriA helicase catalyzes the initial steps of replisome reloading onto repaired DNA replication forks in bacterial DNA replication restart pathways. We have used a high-throughput screen to identify a small molecule inhibitor of PriA-catalyzed duplex DNA unwinding. The compound, CGS 15943, targets Neisseria gonorrhoeae PriA helicase with an IC(50) of 114 ± 24 µM. The PriA helicase of Escherichia coli is also inhibited, although to a lesser extent than N. gonorrhoeae PriA. CGS 15943 decreases rates of PriA-catalyzed ATP hydrolysis and reduces the affinity with which PriA binds DNA. Steady-state kinetic data indicate that CGS 15943 inhibits PriA through a mixed mode of inhibition with respect to ATP and with respect to DNA, indicating that it binds to a site on PriA that participates in both substrate binding and catalysis. Inhibitor binding constants derived from steady-state kinetic experiments reveal that CGS 15943 has the highest binding affinity for the PriA·PriB·ATP complex, intermediate binding affinity for the PriA·PriB·DNA complex, and the lowest binding affinity for the PriA·PriB·DNA·ATP complex, suggesting that PriA assumes different conformations in each of these complexes. We propose that CGS 15943 binds to PriA at a site distinct from the DNA and primary ATP binding sites, perhaps at PriA's weak nucleotide binding site, and induces a conformational change in PriA that renders it less catalytically proficient or prevents conformational changes in PriA that are necessary for ATP hydrolysis and duplex DNA unwinding.


Assuntos
DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/análise , Proteínas de Escherichia coli/antagonistas & inibidores , Quinazolinas/farmacologia , Triazóis/farmacologia , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Neisseria gonorrhoeae/enzimologia , Conformação Proteica/efeitos dos fármacos
2.
Nucleic Acids Res ; 38(2): 499-509, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906704

RESUMO

Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 A resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.


Assuntos
Proteínas de Bactérias/química , Replicação do DNA , Neisseria gonorrhoeae , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Helicases/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Eletricidade Estática
3.
BMC Microbiol ; 11: 189, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21861872

RESUMO

BACKGROUND: Bacterial DNA replication restart pathways facilitate reinitiation of DNA replication following disruptive encounters of a replisome with DNA damage, thereby allowing complete and faithful duplication of the genome. In Neisseria gonorrhoeae, the primosome proteins that catalyze DNA replication restart differ from the well-studied primosome proteins of E. coli with respect to the number of proteins involved and the affinities of their physical interactions: the PriA:PriB interaction is weak in E. coli, but strong in N. gonorrhoeae, and the PriB:DNA interaction is strong in E. coli, but weak in N. gonorrhoeae. In this study, we investigated the functional consequences of this affinity reversal. RESULTS: We report that N. gonorrhoeae PriA's DNA binding and unwinding activities are similar to those of E. coli PriA, and N. gonorrhoeae PriA's helicase activity is stimulated by its cognate PriB, as it is in E. coli. This finding is significant because N. gonorrhoeae PriB's single-stranded DNA binding activity is weak relative to that of E. coli PriB, and in E. coli, PriB's single-stranded DNA binding activity is important for PriB stimulation of PriA helicase. Furthermore, a N. gonorrhoeae PriB variant defective for binding single-stranded DNA can stimulate PriA's helicase activity, suggesting that DNA binding by PriB might not be important for PriB stimulation of PriA helicase in N. gonorrhoeae. We also demonstrate that N. gonorrhoeae PriB stimulates ATP hydrolysis catalyzed by its cognate PriA. This activity of PriB has not been observed in E. coli, and could be important for PriB stimulation of PriA helicase in N. gonorrhoeae. CONCLUSIONS: The results of this study demonstrate that a bacterial PriB homolog with weak single-stranded DNA binding activity can stimulate the DNA unwinding activity of its cognate PriA helicase. While it remains unclear if N. gonorrhoeae PriB's weak DNA binding activity is required for PriB stimulation of PriA helicase, the ability of PriB to stimulate PriA-catalyzed ATP hydrolysis could play an important role. Thus, the weak interaction between N. gonorrhoeae PriB and DNA might be compensated for by the strong interaction between PriB and PriA, which could result in allosteric activation of PriA's ATPase activity.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neisseria gonorrhoeae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Helicases/química , DNA Helicases/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Conformação de Ácido Nucleico , Ligação Proteica
4.
Structure ; 12(11): 1967-75, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15530361

RESUMO

Maintenance of genome stability following DNA damage requires origin-independent reinitiation of DNA replication at repaired replication forks. In E. coli, PriA, PriB, PriC, and DnaT play critical roles in recognizing repaired replication forks and reloading the replisome onto the template to reinitiate DNA replication. Here, we report the 2.0 A resolution crystal structure of E. coli PriB, revealing a dimer that consists of a single structural domain formed by two oligonucleotide/oligosaccharide binding (OB) folds. Structural similarity of PriB to single-stranded DNA binding proteins reveals insights into its mechanisms of DNA binding. The structure further establishes a putative protein interaction surface that may contribute to the role of PriB in primosome assembly by facilitating interactions with PriA and DnaT. This is the first high-resolution structure of a protein involved in oriC-independent replisome loading and provides unique insight into mechanisms of replication restart in E. coli.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , DNA Bacteriano/metabolismo , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
5.
PLoS One ; 10(7): e0133419, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26182205

RESUMO

Reactivation of repaired DNA replication forks in bacteria is catalyzed by PriA helicase. This broadly-conserved bacterial enzyme can remodel the structure of DNA at a repaired DNA replication fork by unwinding small portions of duplex DNA to prepare the fork for replisome reloading. While PriA's helicase activity is not strictly required for cell viability in E. coli, the sequence motifs that confer helicase activity upon PriA are well-conserved among sequenced bacterial priA genes, suggesting that PriA's duplex DNA unwinding activity confers a selective advantage upon cells. However, these helicase sequence motifs are not well-conserved among priA genes from the Deinococcus-Thermus phylum. Here, we show that PriA from a highly radiation-resistant member of that phylum, Deinococcus radiodurans, lacks the ability to hydrolyze ATP and unwind duplex DNA, thus qualifying D. radiodurans PriA as a pseudohelicase. Despite the lack of helicase activity, D. radiodurans PriA has retained the DNA binding activity expected of a typical PriA helicase, and we present evidence for a physical interaction between D. radiodurans PriA and its cognate replicative helicase, DnaB. This suggests that PriA has retained a role in replisome reloading onto repaired DNA replication forks in D. radiodurans despite its lack of helicase activity.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , DNA Helicases/genética , DNA Helicases/fisiologia , Deinococcus/enzimologia , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Bases , Catálise , Clonagem Molecular , DNA/química , Reparo do DNA , Replicação do DNA , Deinococcus/genética , DnaB Helicases/genética , Eletroforese em Gel de Ágar , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Evolução Molecular , Guanidina/química , Hidrólise , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Homologia de Sequência do Ácido Nucleico
6.
PLoS One ; 6(9): e24494, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931731

RESUMO

Primosome protein PriB is a single-stranded DNA-binding protein that serves as an accessory factor for PriA helicase-catalyzed origin-independent reinitiation of DNA replication in bacteria. A recent report describes the identification of a novel PriB protein in Klebsiella pneumoniae that is significantly shorter than most sequenced PriB homologs. The K. pneumoniae PriB protein is proposed to comprise 55 amino acid residues, in contrast to E. coli PriB which comprises 104 amino acid residues and has a length that is typical of most sequenced PriB homologs. Here, we report results of a sequence analysis that suggests that the priB gene of K. pneumoniae encodes a 104-amino acid PriB protein, akin to its E. coli counterpart. Furthermore, we have cloned the K. pneumoniae priB gene and purified the 104-amino acid K. pneumoniae PriB protein. Gel filtration experiments reveal that the K. pneumoniae PriB protein is a dimer, and equilibrium DNA binding experiments demonstrate that K. pneumoniae PriB's single-stranded DNA-binding activity is similar to that of E. coli PriB. These results indicate that the PriB homolog of K. pneumoniae is similar in structure and in function to that of E. coli.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cromatografia em Gel , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Temperatura
7.
Mol Cell ; 26(6): 781-93, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17588514

RESUMO

Collapsed DNA replication forks must be reactivated through origin-independent reloading of the replication machinery (replisome) to ensure complete duplication of cellular genomes. In E. coli, the PriA-dependent pathway is the major replication restart mechanism and requires primosome proteins PriA, PriB, and DnaT for replisome reloading. However, the molecular mechanisms that regulate origin-independent replisome loading are not fully understood. Here, we demonstrate that assembly of primosome protein complexes represents a key regulatory mechanism, as inherently weak PriA-PriB and PriB-DnaT interactions are strongly stimulated by single-stranded DNA. Furthermore, the binding site on PriB for single-stranded DNA partially overlaps the binding sites for PriA and DnaT, suggesting a dynamic primosome assembly process in which single-stranded DNA is handed off from one primosome protein to another as a repaired replication fork is reactivated. This model helps explain how origin-independent initiation of DNA replication is restricted to repaired replication forks, preventing overreplication of the genome.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Sítios de Ligação/fisiologia , DNA Helicases/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/fisiologia , Complexos Multienzimáticos/genética , Ligação Proteica/fisiologia , Origem de Replicação
8.
J Biol Chem ; 280(48): 39693-700, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16188886

RESUMO

The frequency with which replication forks break down in all organisms requires that specific mechanisms ensure completion of genome duplication. In Escherichia coli a major pathway for reloading of the replicative apparatus at sites of fork breakdown is dependent on PriA helicase. PriA acts in conjunction with PriB and DnaT to effect loading of the replicative helicase DnaB back onto the lagging strand template, either at stalled fork structures or at recombination intermediates. Here we showed that PriB stimulates PriA helicase, acting to increase the apparent processivity of PriA. This stimulation correlates with the ability of PriB to form a ternary complex with PriA and DNA structures containing single-stranded DNA, suggesting that the known single-stranded DNA binding function of PriB facilitates unwinding by PriA helicase. This enhanced apparent processivity of PriA might play an important role in generating single-stranded DNA at stalled replication forks upon which to load DnaB. However, stimulation of PriA by PriB is not DNA structure-specific, demonstrating that targeting of stalled forks and recombination intermediates during replication restart likely resides with PriA alone.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Helicases/fisiologia , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Sequência de Bases , Catálise , DNA/química , DnaB Helicases , Relação Dose-Resposta a Droga , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Oligonucleotídeos/química , Ligação Proteica , Recombinação Genética , Temperatura
9.
J Virol ; 76(12): 6073-82, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021340

RESUMO

Glycoprotein B (gB) is the most highly conserved of the envelope glycoproteins of human herpesviruses. The gB protein of human cytomegalovirus (CMV) serves multiple roles in the life cycle of the virus. To investigate structural properties of gB that give rise to its function, we sought to determine the disulfide bond arrangement of gB. To this end, a recombinant form of gB (gB-S) comprising the entire ectodomain of the glycoprotein (amino acids 1 to 750) was constructed and expressed in insect cells. Proteolytic fragmentation and mass spectrometry were performed using purified gB-S, and the five disulfide bonds that link 10 of the 11 highly conserved cysteine residues of gB were mapped. These bonds are C94-C550, C111-C506, C246-C250, C344-C391, and C573-C610. This configuration closely parallels the disulfide bond configuration of herpes simplex type 2 (HSV-2) gB (N. Norais, D. Tang, S. Kaur, S. H. Chamberlain, F. R. Masiarz, R. L. Burke, and F. Markus, J. Virol. 70:7379-7387, 1996). However, despite the high degree of conservation of cysteine residues between CMV gB and HSV-2 gB, the disulfide bond arrangements of the two homologs are not identical. We detected a disulfide bond between the conserved cysteine residue 246 and the nonconserved cysteine residue 250 of CMV gB. We hypothesize that this disulfide bond stabilizes a tight loop in the amino-terminal fragment of CMV gB that does not exist in HSV-2 gB. We predicted that the cysteine residue not found in a disulfide bond of CMV gB, cysteine residue 185, would play a role in dimerization, but a cysteine substitution mutant in cysteine residue 185 showed no apparent defect in the ability to form dimers. These results indicate that gB oligomerization involves additional interactions other than a single disulfide bond. This work represents the second reported disulfide bond structure for a herpesvirus gB homolog, and the discovery that the two structures are not identical underscores the importance of empirically determining structures even for highly conserved proteins.


Assuntos
Citomegalovirus/química , Dissulfetos/química , Proteínas do Envelope Viral/química , Linhagem Celular , Cisteína/química , Cisteína/genética , Citomegalovirus/genética , Humanos , Modelos Moleculares , Mapeamento de Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação
10.
J Virol ; 78(15): 8333-41, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15254205

RESUMO

Human cytomegalovirus (CMV) utilizes a complex route of entry into cells that involves multiple interactions between viral envelope proteins and cellular receptors. Three conserved viral glycoproteins, gB, gH, and gL, are required for CMV-mediated membrane fusion, but little is known of how these proteins cooperate during entry (E. R. Kinzler and T. Compton, submitted for publication). The goal of this study was to begin defining the molecular mechanisms that underlie membrane fusion mediated by herpesviruses. We identified heptad repeat sequences predicted to form alpha-helical coiled coils in two glycoproteins required for fusion, gB and gH. Peptides derived from gB and gH containing the heptad repeat sequences inhibited virus entry when introduced coincident with virus inoculation onto cells or when mixed with virus prior to inoculation. Neither peptide affected binding of CMV to fibroblasts, suggesting that the peptides inhibit membrane fusion. Both gB and gH coiled-coil peptides blocked entry of several laboratory-adapted and clinical strains of human CMV, but neither peptide affected entry of murine CMV or herpes simplex virus type 1 (HSV-1). Although murine CMV and HSV-1 gB and gH have heptad repeat regions, the ability of human CMV gB and gH peptides to inhibit virus entry correlates with the specific residues that comprise the heptad repeat region. The ability of gB and gH coiled-coil peptides to inhibit virus entry independently of cell contact suggests that the coiled-coil regions of gB and gH function differently from those of class I, single-component fusion proteins. Taken together, these data support a critical role for alpha-helical coiled coils in gB and gH in the entry pathway of CMV.


Assuntos
Citomegalovirus/fisiologia , Fusão de Membrana , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Fibroblastos/virologia , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas do Envelope Viral/fisiologia , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa