Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Cell ; 33(4): 832-845, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793861

RESUMO

Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.


Assuntos
Arabidopsis/genética , Genoma de Planta , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Bases de Dados Genéticas , Epigenômica/métodos , Splicing de RNA , Análise de Sequência de RNA , Análise de Célula Única/métodos
2.
Bioinformatics ; 38(8): 2348-2349, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179566

RESUMO

SUMMARY: Rapid progress in genome science requires equally rapid visualization software development so that researchers can better explore and understand novel datasets. To make developing new visualizations faster and easier, we previously re-factored the Integrated Genome Browser (IGB), a desktop Java application with dozens of features, into a pluggable application framework that can accept new functionality as plug-ins, called IGB Apps. However, developers lacked a centralized location for sharing Apps, making it hard to connect with potential users. To fill this gap, we created an App Store for IGB, a user-friendly Web site for developers to release and document Apps, and for users to find them. AVAILABILITY AND IMPLEMENTATION: The IGB App Store is available from https://bioviz.org.


Assuntos
Aplicativos Móveis , Genoma
3.
Plant J ; 103(2): 752-768, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279407

RESUMO

Understanding how flowers form is an important problem in plant biology, as human food supply depends on flower and seed production. Flower development also provides an excellent model for understanding how cell division, expansion and differentiation are coordinated during organogenesis. In the model plant Arabidopsis thaliana, floral organogenesis requires AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE 6 (AIL6)/PLETHORA 3 (PLT3), two members of the Arabidopsis AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family. Together, ANT and AIL6/PLT3 regulate aspects of floral organogenesis, including floral organ initiation, growth, identity specification and patterning. Previously, we used RNA-Seq to identify thousands of genes with disrupted expression in ant ail6 mutant flowers, indicating that ANT and AIL6/PLT3 influence a vast transcriptional network. The immediate downstream targets of ANT and AIL6/PLT3 in flowers are unknown, however. To identify direct targets of ANT regulation, we performed an RNA-Seq time-course experiment in which we induced ANT activity in transgenic plants bearing an ANT-glucocorticoid receptor fusion construct. In addition, we performed a ChIP-Seq experiment that identified ANT binding sites in developing flowers. These experiments identified 200 potential ANT target genes based on their proximity to ANT binding sites and differential expression in response to ANT. These 200 candidate target genes were involved in functions such as polarity specification, floral organ development, meristem development and auxin signaling. In addition, we identified several genes associated with lateral organ growth that may mediate the role of ANT in organ size control. These results reveal new features of the ANT transcriptional network by linking ANT to previously unknown regulatory targets.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Flores/anatomia & histologia , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
J Exp Bot ; 72(15): 5478-5493, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34013313

RESUMO

Arabidopsis flower primordia give rise to organ primordia in stereotypical positions within four concentric whorls. Floral organ primordia in each whorl undergo distinct developmental programs to become one of four organ types (sepals, petals, stamens, and carpels). The Arabidopsis transcription factors AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are required for correct positioning of floral organ initiation, contribute to the specification of floral organ identity, and regulate the growth and morphogenesis of developing floral organs. To gain insight into the molecular mechanisms by which ANT and AIL6 contribute to floral organogenesis, we identified the genome-wide binding sites of both ANT and AIL6 in stage 3 flower primordia, the developmental stage at which sepal primordia become visible and class B and C floral homeotic genes are first expressed. AIL6 binds to a subset of ANT sites, suggesting that AIL6 regulates some but not all of the same target genes as ANT. ANT- and AIL6-binding sites are associated with genes involved in many biological processes related to meristem and flower organ development. Comparison of genes associated with both ANT and AIL6 ChIP-Seq peaks and those differentially expressed after perturbation of ANT and/or AIL6 activity identified likely direct targets of ANT and AIL6 regulation. These include class B and C floral homeotic genes, growth regulatory genes, and genes involved in vascular development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Fenômenos Biológicos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Fatores de Transcrição/genética
5.
Plant J ; 100(3): 641-654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350781

RESUMO

Improvements in next-generation sequencing technologies have resulted in dramatically reduced sequencing costs. This has led to an explosion of '-seq'-based methods, of which RNA sequencing (RNA-seq) for generating transcriptomic data is the most popular. By analysing global patterns of gene expression in organs/tissues/cells of interest or in response to chemical or environmental perturbations, researchers can better understand an organism's biology. Tools designed to work with large RNA-seq data sets enable analyses and visualizations to help generate hypotheses about a gene's function. We present here a user-friendly RNA-seq data exploration tool, called the 'eFP-Seq Browser', that shows the read map coverage of a gene of interest in each of the samples along with 'electronic fluorescent pictographic' (eFP) images that serve as visual representations of expression levels. The tool also summarizes the details of each RNA-seq experiment, providing links to archival databases and publications. It automatically computes the reads per kilobase per million reads mapped expression-level summaries and point biserial correlation scores to sort the samples based on a gene's expression level or by how dissimilar the read map profile is from a gene splice variant, to quickly identify samples with the strongest expression level or where alternative splicing might be occurring. Links to the Integrated Genome Browser desktop visualization tool allow researchers to visualize and explore the details of RNA-seq alignments summarized in eFP-Seq Browser as coverage graphs. We present four cases of use of the eFP-Seq Browser for ABI3, SR34, SR45a and U2AF65B, where we examine expression levels and identify alternative splicing. The URL for the browser is https://bar.utoronto.ca/eFP-Seq_Browser/. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. Tool is at https://bar.utoronto.ca/eFP-Seq_Browser/; RNA-seq data at https://s3.amazonaws.com/iplant-cdn/iplant/home/araport/rnaseq_bam/ and https://s3.amazonaws.com/iplant-cdn/iplant/home/araport/rnaseq_bam/Klepikova/. Code is available at https://github.com/BioAnalyticResource/eFP-Seq-Browser.


Assuntos
Arabidopsis/genética , Visualização de Dados , Genoma de Planta/genética , Transcriptoma , Navegador , Processamento Alternativo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Estresse Fisiológico , Temperatura
6.
Proc Natl Acad Sci U S A ; 114(29): E5995-E6004, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673986

RESUMO

The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Citocininas/genética , Citocininas/farmacologia , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Physiol ; 178(1): 130-147, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002259

RESUMO

Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Clorofila/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fotossíntese/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética
8.
Plant J ; 92(6): 1218-1231, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031026

RESUMO

Alternative splicing and the usage of alternate transcription start- or stop sites allows a single gene to produce multiple transcript isoforms. Most plant genes express certain isoforms at a significantly higher level than others, but under specific conditions this expression dominance can change, resulting in a different set of dominant isoforms. These events of differential transcript usage (DTU) have been observed for thousands of Arabidopsis thaliana, Zea mays and Vitis vinifera genes, and have been linked to development and stress response. However, neither the characteristics of these genes, nor the implications of DTU on their protein coding sequences or functions, are currently well understood. Here we present a dataset of isoform dominance and DTU for all genes in the AtRTD2 reference transcriptome based on a protocol that was benchmarked on simulated data and validated through comparison with a published reverse transciptase-polymerase chain reaction panel. We report DTU events for 8148 genes across 206 public RNA-Seq samples, and find that protein sequences are affected in 22% of the cases. The observed DTU events show high consistency across replicates, and reveal reproducible patterns in response to treatment and development. We also demonstrate that genes with different evolutionary ages, expression breadths and functions show large differences in the frequency at which they undergo DTU, and in the effect that these events have on their protein sequences. Finally, we showcase how the generated dataset can be used to explore DTU events for genes of interest or to find genes with specific DTU in samples of interest.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta/genética , Isoformas de RNA/genética , Transcriptoma , Perfilação da Expressão Gênica , RNA de Plantas/genética , Análise de Sequência de RNA
9.
Bioinformatics ; 32(14): 2089-95, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153568

RESUMO

MOTIVATION: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. RESULTS: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. AVAILABILITY AND IMPLEMENTATION: IGB is open source and is freely available from http://bioviz.org/igb CONTACT: aloraine@uncc.edu.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Software , Animais , Imunoprecipitação da Cromatina , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA , Interface Usuário-Computador
10.
Bioinformatics ; 32(16): 2499-501, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153567

RESUMO

UNLABELLED: One gene can produce multiple transcript variants encoding proteins with different functions. To facilitate visual analysis of transcript variants, we developed ProtAnnot, which shows protein annotations in the context of genomic sequence. ProtAnnot searches InterPro and displays profile matches (protein annotations) alongside gene models, exposing how alternative promoters, splicing and 3' end processing add, remove, or remodel functional motifs. To draw attention to these effects, ProtAnnot color-codes exons by frame and displays a cityscape graphic summarizing exonic sequence at each position. These techniques make visual analysis of alternative transcripts faster and more convenient for biologists. AVAILABILITY AND IMPLEMENTATION: ProtAnnot is a plug-in App for Integrated Genome Browser, an open source desktop genome browser available from http://www.bioviz.org CONTACT: aloraine@uncc.edu.


Assuntos
Processamento Alternativo , Genoma , Genômica , Humanos , Anotação de Sequência Molecular , Proteínas , Navegador
11.
Plant Physiol ; 171(3): 2069-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208279

RESUMO

AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Parede Celular/genética , Ciclopentanos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Mutação , Oxilipinas/metabolismo , Pectinas/genética , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética
12.
BMC Plant Biol ; 16(1): 260, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931185

RESUMO

BACKGROUND: Cytokinin activates transcriptional cascades important for development and the responses to biotic and abiotic stresses. Most of what is known regarding cytokinin-regulated gene expression comes from studies of the dicotyledonous plant Arabidopsis thaliana. To expand the understanding of the cytokinin-regulated transcriptome, we employed RNA-Seq to analyze gene expression in response to cytokinin in roots and shoots of the monocotyledonous plant rice. RESULTS: We identified over 4,600 and approximately 2,400 genes differentially expressed in response to cytokinin in roots and shoots respectively. There were some similarities in the sets of cytokinin-regulated genes identified in rice and Arabidopsis, including an up-regulation of genes that act to reduce cytokinin function. Consistent with this, we found that the preferred DNA-binding motif of a rice type-B response regulator is similar to those from Arabidopsis. Analysis of the genes regulated by cytokinin in rice revealed a large number of transcription factors, receptor-like kinases, and genes involved in protein degradation, as well as genes involved in development and the response to biotic stress. Consistent with the over-representation of genes involved in biotic stress, there is a substantial overlap in the genes regulated by cytokinin and those differentially expressed in response to pathogen infection, suggesting that cytokinin plays an integral role in the transcriptional response to pathogens in rice, including the induction of a large number of WRKY transcription factors. CONCLUSIONS: These results begin to unravel the complex gene regulation after cytokinin perception in a crop of agricultural importance and provide insight into the processes and responses modulated by cytokinin in monocots.


Assuntos
Citocininas/farmacologia , Oryza/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo
13.
Plant Physiol ; 167(3): 711-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583925

RESUMO

Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Celulose/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Sementes/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Birrefringência , Cátions , Diferenciação Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quelantes/farmacologia , Cristalização , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana/genética , Mutação , Especificidade de Órgãos/efeitos dos fármacos , Pectinas/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Solubilidade
14.
BMC Biotechnol ; 15: 89, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26427366

RESUMO

BACKGROUND: Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds. We used RNA-Seq to survey gene expression in three transgenic soybean lines expressing recombinant protein at levels representing up to 1.61 % of total protein in seed tissues. The three lines included: ST77, expressing human thyroglobulin protein (hTG), ST111, expressing human myelin basic protein (hMBP), and 764, expressing a mutant, nontoxic form of a staphylococcal subunit vaccine protein (mSEB). All lines selected for analysis were homozygous and contained a single copy of the transgene. METHODS: Each transgenic soybean seed was screened for transgene presence and recombinant protein expression via PCR and western blotting.  Whole seed mRNA was extracted and cDNA libraries constructed for Illumina sequencing.  Following alignment to the soybean reference genome, differential gene expression analysis was conducted using edgeR and cufflinks.  Functional analysis of differentially expressed genes was carried out using the gene ontology analysis tool AgriGO. RESULTS: The transcriptomes of nine seeds from each transgenic line were sequenced and compared with wild type seeds. Native soybean gene expression was significantly altered in line 764 (mSEB) with more than 3000 genes being upregulated or downregulated. ST77 (hTG) and ST111 (hMBP) had significantly less differences with 52 and 307 differentially expressed genes respectively. Gene ontology enrichment analysis found that the upregulated genes in the 764 line were annotated with functions related to endopeptidase inhibitors and protein synthesis, but suppressed expression of genes annotated to the nuclear pore and to protein transport. No significant gene ontology terms were detected in ST77, and only a few genes involved in photosynthesis and thylakoid functions were downregulated in ST111. Despite these differences, transgenic plants and seeds appeared phenotypically similar to non-transgenic controls. There was no correlation between recombinant protein expression level and the quantity of differentially expressed genes detected. CONCLUSIONS: Measurable unscripted gene expression changes were detected in the seed transcriptomes of all three transgenic soybean lines analyzed, with line 764 being substantially altered. Differences detected at the transcript level may be due to T-DNA insert locations, random mutations following transformation or direct effects of the recombinant protein itself, or a combination of these. The physiological consequences of such changes remain unknown.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA de Plantas/análise , RNA de Plantas/genética , Sementes/química , Sementes/genética , Glycine max/genética
15.
BMC Bioinformatics ; 15: 364, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511303

RESUMO

BACKGROUND: Alternative Splicing (AS) as a post-transcription regulation mechanism is an important application of RNA-seq studies in eukaryotes. A number of software and computational methods have been developed for detecting AS. Most of the methods, however, are designed and tested on animal data, such as human and mouse. Plants genes differ from those of animals in many ways, e.g., the average intron size and preferred AS types. These differences may require different computational approaches and raise questions about their effectiveness on plant data. The goal of this paper is to benchmark existing computational differential splicing (or transcription) detection methods so that biologists can choose the most suitable tools to accomplish their goals. RESULTS: This study compares the eight popular public available software packages for differential splicing analysis using both simulated and real Arabidopsis thaliana RNA-seq data. All software are freely available. The study examines the effect of varying AS ratio, read depth, dispersion pattern, AS types, sample sizes and the influence of annotation. Using a real data, the study looks at the consistences between the packages and verifies a subset of the detected AS events using PCR studies. CONCLUSIONS: No single method performs the best in all situations. The accuracy of annotation has a major impact on which method should be chosen for AS analysis. DEXSeq performs well in the simulated data when the AS signal is relative strong and annotation is accurate. Cufflinks achieve a better tradeoff between precision and recall and turns out to be the best one when incomplete annotation is provided. Some methods perform inconsistently for different AS types. Complex AS events that combine several simple AS events impose problems for most methods, especially for MATS. MATS stands out in the analysis of real RNA-seq data when all the AS events being evaluated are simple AS events.


Assuntos
Processamento Alternativo/genética , Arabidopsis/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Software , Animais , Genoma de Planta , Humanos , Íntrons/genética , Camundongos , Reação em Cadeia da Polimerase
16.
Plant Physiol ; 162(2): 1092-109, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23590974

RESUMO

Pollen grains of Arabidopsis (Arabidopsis thaliana) contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing patterns of pollen transcripts will improve our understanding of pollen and allow investigation of tissue-specific splicing in plants. Most Arabidopsis pollen transcriptome studies have used the ATH1 microarray, which does not assay splice variants and lacks specific probe sets for many genes. To investigate the pollen transcriptome, we performed high-throughput sequencing (RNA-Seq) of Arabidopsis pollen and seedlings for comparison. Gene expression was more diverse in seedling, and genes involved in cell wall biogenesis were highly expressed in pollen. RNA-Seq detected at least 4,172 protein-coding genes expressed in pollen, including 289 assayed only by nonspecific probe sets. Additional exons and previously unannotated 5' and 3' untranslated regions for pollen-expressed genes were revealed. We detected regions in the genome not previously annotated as expressed; 14 were tested and 12 were confirmed by polymerase chain reaction. Gapped read alignments revealed 1,908 high-confidence new splicing events supported by 10 or more spliced read alignments. Alternative splicing patterns in pollen and seedling were highly correlated. For most alternatively spliced genes, the ratio of variants in pollen and seedling was similar, except for some encoding proteins involved in RNA splicing. This study highlights the robustness of splicing patterns in plants and the importance of ongoing annotation and visualization of RNA-Seq data using interactive tools such as Integrated Genome Browser.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Pólen/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Plântula/genética , Transcrição Gênica
17.
Plant Physiol ; 162(1): 272-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524861

RESUMO

Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Motivos de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Regulação para Baixo , Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Splicing de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Análise de Sequência de RNA , Transdução de Sinais , Regulação para Cima
18.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38187649

RESUMO

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The Solanum lycopersicum anthocyanin reduced ( are ) mutant has a FLAVANONE 3 HYDROXYLASE ( F3H ) gene mutation resulting in impaired synthesis of flavonol antioxidants. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, which is accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent ROS accumulation in pollen and reversed are's reduced viability, germination, and tube elongation to VF36 levels. VF36 transformed with an F3H overexpression construct prevented temperature driven ROS increases and impaired pollen performance, revealing thermotolerance results from elevated flavonol synthesis. Although stigmas of are had reduced flavonols and elevated ROS, the growth of are pollen tubes were similarly impaired in both are and VF36 pistils. RNA-Seq was performed at optimal and stress temperatures in are , VF36, and the VF36 F3H overexpression line at multiple timepoints across pollen tube elongation. Differentially expressed gene numbers increased with duration of elevated temperature in all genotypes, with the largest number in are . These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that leads to reproductive failure. One sentence summary: Flavonol antioxidants reduce the negative impacts of elevated temperatures on pollen performance by reducing levels of heat induced reactive oxygen species and modulation of heat-induced changes in the pollen transcriptome.

19.
Proc Natl Acad Sci U S A ; 107(50): 21896-901, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098265

RESUMO

At least two components that modulate plant resistance against the fungal powdery mildew disease are ancient and have been conserved since the time of the monocot-dicot split (≈ 200 Mya). These components are the seven transmembrane domain containing MLO/MLO2 protein and the syntaxin ROR2/PEN1, which act antagonistically and have been identified in the monocot barley (Hordeum vulgare) and the dicot Arabidopsis thaliana, respectively. Additionally, syntaxin-interacting N-ethylmaleimide sensitive factor adaptor protein receptor proteins (VAMP721/722 and SNAP33/34) as well as a myrosinase (PEN2) and an ABC transporter (PEN3) contribute to antifungal resistance in both barley and/or Arabidopsis. Here, we show that these genetically defined defense components share a similar set of coexpressed genes in the two plant species, comprising a statistically significant overrepresentation of gene products involved in regulation of transcription, posttranslational modification, and signaling. Most of the coexpressed Arabidopsis genes possess a common cis-regulatory element that may dictate their coordinated expression. We exploited gene coexpression to uncover numerous components in Arabidopsis involved in antifungal defense. Together, our data provide evidence for an evolutionarily conserved regulon composed of core components and clade/species-specific innovations that functions as a module in plant innate immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Ascomicetos/patogenicidade , Hordeum , Proteínas de Membrana/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regulon , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/imunologia , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/imunologia , Hordeum/microbiologia , Proteínas de Membrana/metabolismo , Plantas Geneticamente Modificadas
20.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747711

RESUMO

HOP2 is a conserved protein that plays a positive role in homologous chromosome pairing and a separable role in preventing illegitimate connections between nonhomologous chromosome regions during meiosis. We employed ChIP-seq to discover that Arabidopsis HOP2 binds along the length of all chromosomes, except for centromeric and nucleolar organizer regions, and no binding sites were detected in the organelle genomes. A large number of reads were assigned to the HOP2 locus itself, yet TAIL-PCR and SNP analysis of the aligned sequences indicate that many of these reads originate from the transforming T-DNA, supporting the role of HOP2 in preventing nonhomologous exchanges. The 292 ChIP-seq peaks are largely found in promoter regions and downstream from genes, paralleling the distribution of recombination hotspots, and motif analysis revealed that there are several conserved sequences that are also enriched at crossover sites. We conducted coimmunoprecipitation of HOP2 followed by LC-MS/MS and found enrichment for several proteins, including some histone variants and modifications that are also known to be associated with recombination hotspots. We propose that HOP2 may be directed to chromatin motifs near double strand breaks, where homology checks are proposed to occur.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa