Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Plant Biol ; 24(1): 194, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493116

RESUMO

BACKGROUND: In soybeans, faster canopy coverage (CC) is a highly desirable trait but a fully covered canopy is unfavorable to light interception at lower levels in the canopy with most of the incident radiation intercepted at the top of the canopy. Shoot architecture that influences CC is well studied in crops such as maize and wheat, and altering architectural traits has resulted in enhanced yield. However, in soybeans the study of shoot architecture has not been as extensive. RESULTS: This study revealed significant differences in CC among the selected soybean accessions. The rate of CC was found to decrease at the beginning of the reproductive stage (R1) followed by an increase during the R2-R3 stages. Most of the accessions in the study achieved maximum rate of CC between R2-R3 stages. We measured Light interception (LI), defined here as the ratio of Photosynthetically Active Radiation (PAR) transmitted through the canopy to the incoming PAR or the radiation above the canopy. LI was found to be significantly correlated with CC parameters, highlighting the relationship between canopy structure and light interception. The study also explored the impact of plant shape on LI and CO2 assimilation. Plant shape was characterized into distinct quantifiable parameters and by modeling the impact of plant shape on LI and CO2 assimilation, we found that plants with broad and flat shapes at the top maybe more photosynthetically efficient at low light levels, while conical shapes were likely more advantageous when light was abundant. Shoot architecture of plants in this study was described in terms of whole plant, branching and leaf-related traits. There was significant variation for the shoot architecture traits between different accessions, displaying high reliability. We found that that several shoot architecture traits such as plant height, and leaf and internode-related traits strongly influenced CC and LI. CONCLUSION: In conclusion, this study provides insight into the relationship between soybean shoot architecture, canopy coverage, and light interception. It demonstrates that novel shoot architecture traits we have defined here are genetically variable, impact CC and LI and contribute to our understanding of soybean morphology. Correlations between different architecture traits, CC and LI suggest that it is possible to optimize soybean growth without compromising on light transmission within the soybean canopy. In addition, the study underscores the utility of integrating low-cost 2D phenotyping as a practical and cost-effective alternative to more time-intensive 3D or high-tech low-throughput methods. This approach offers a feasible means of studying basic shoot architecture traits at the field level, facilitating a broader and efficient assessment of plant morphology.


Assuntos
Glycine max , Fotossíntese , Dióxido de Carbono , Reprodutibilidade dos Testes , Produtos Agrícolas , Folhas de Planta , Luz
2.
Heredity (Edinb) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997517

RESUMO

Parental selection is perhaps the most critical decision a breeder makes, establishing the foundation of the entire program for years to come. Cross selection based on predicted mean and genetic variance can be further expanded to multiple-trait improvement by predicting the genetic correlation ( r G ) between pairs of traits. Our objective was to empirically assess the ability to predict the family mean, genetic variance, superior progeny mean and genetic correlation through genomic prediction in a soybean population. Data made available through the Soybean Nested Association Mapping project included phenotypic data on seven traits (days to maturity, lodging, oil, plant height, protein, seed size, and seed yield) for 39 families. Training population composition followed a leave-one-family-out cross-validation scheme, with the validation family genetic parameters predicted using the remaining families as the training set. The predictive abilities for family mean and superior progeny mean were significant for all traits while predictive ability of genetic variance was significant for four traits. We were able to validate significant predictive abilities of r G for 18 out of 21 (86%) pairwise trait combinations (P < 0.05). The findings from this study support the use of genome-wide marker effects for predicting r G in soybean biparental crosses. If successfully implemented in breeding programs, this methodology could help to increase the rate of genetic gain for multiple correlated traits.

3.
Theor Appl Genet ; 136(12): 243, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950832

RESUMO

The inbred-hybrid system of maize breeding closely resembles a reciprocal full-sib (RFS) selection program. Studying changes in genetic variation as a result of RFS selection can help illuminate long-standing questions regarding the relative roles of selection and genetic drift and help understand the nature of adaptation occurring in selection programs. The University of Nebraska-Lincoln Replicated Recurrent Selection (UNL-RpRS) program underwent eight cycles of replicated RFS and S1-progeny selection, making it a powerful system to study genomic changes accompanying selection for inter-population performance. The objectives of this study were to identify regions of the genome under selection after eight cycles of selection and evaluate the effect eight cycles of selection for inter-population full-sib performance had in expanding genome-wide and localized population structure. We address these questions with a large set of individuals sampled from the UNL-RpRS program with dense genotyping-by-sequence data. We found evidence of parallel selection signatures in the UNL-RpRS program, with a region on chromosome 7 being implicated in three of the four selection systems studied. Regions that displayed selection signatures across independently run selection programs represent regions likely to be capitalizing on standing genetic variation and support a soft sweep model of adaptation. We did not find selection to be a strong force in diverging populations undergoing RFS. This could be due to the nature of adaptation occurring in these populations, underlying gene action, or a result of unstable genetic topographies.


Assuntos
Variação Genética , Seleção Genética , Humanos , Melhoramento Vegetal , Genômica , Zea mays/genética
4.
Proc Biol Sci ; 288(1956): 20210693, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344180

RESUMO

Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Genoma , Genômica , Genótipo , Humanos , Fenótipo
5.
Theor Appl Genet ; 134(2): 687-699, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33398385

RESUMO

KEY MESSAGE: Training population optimization algorithms are useful for efficiently training genomic prediction models for single-cross performance, especially if the population is extended beyond only realized crosses to all possible single crosses. Genomic prediction of single-cross performance could allow effective evaluation of all possible single crosses between all inbreds developed in a hybrid breeding program. The objectives of the present study were to investigate the effect of different levels of relatedness on genomic predictive ability of single crosses, evaluate the usefulness of deterministic formula to forecast prediction accuracy in advance, and determine the potential for TRS optimization based on prediction error variance (PEVmean) and coefficient of determination (CDmean) criteria. We used 481 single crosses made by crossing 89 random recombinant inbred lines (RILs) belonging to the Iowa stiff stalk synthetic group with 103 random RILs belonging to the non-stiff stalk synthetic heterotic group. As expected, predictive ability was enhanced by ensuring close relationships between TRSs and target sets, even when TRS sizes were smaller. We found that designing a TRS based on PEVmean or CDmean criteria is useful for increasing the efficiency of genomic prediction of maize single crosses. We went further and extended the sampling space from that of all observed single crosses to all possible single crosses, providing a much larger genetic space within which to design a training population. Using all possible single crosses increased the advantage of the PEVmean and CDmean methods based on expected prediction accuracy. This finding suggests that it may be worthwhile using an optimization algorithm to select a training population from all possible single crosses to maximize efficiency in training accurate models for hybrid genomic prediction.


Assuntos
Cruzamentos Genéticos , Genoma de Planta , Melhoramento Vegetal/normas , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681702

RESUMO

The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.


Assuntos
Glycine max/genética , Ferro/metabolismo , Locos de Características Quantitativas , Estresse Fisiológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Análise de Sequência de RNA , Glycine max/fisiologia
7.
Environ Microbiol ; 22(3): 889-904, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163094

RESUMO

Root-associated microbial communities are important for maintaining agricultural productivity. However, belowground microbial community response to drought in temperate maize agroecosystems, as well as how these responses to water-stress are shaped by host genotype are poorly understood. Ten maize hybrids (six newer and four older) were grown in a replicated field trial. The endosphere, rhizosphere and soil bacterial and archaeal communities were sampled and analyzed using 16S rRNA gene amplicon sequencing. Sampling was done at two developmental stages in a water-limited environment with and without supplemental irrigation. Significant shifts in microbial community composition (ß-diversity) were measured between two sampling times during the season, in well-watered and water-stressed conditions and in newer and older generation maize hybrids. The microbial community diversity within samples (α-diversity) was not affected by drought stress or host factors. The phyla Actinobacteria and Firmicutes were more abundant in the rhizosphere of newer hybrids under water stress. These results highlight the importance of temporal variation, environmental stress and plant genetics as influenced by breeding history in shaping the composition of root associated microbial communities. These insights may provide new approaches to the improvement of crop stress tolerance through optimizing microbial communities.


Assuntos
Secas , Microbiota/fisiologia , Microbiologia do Solo , Zea mays/microbiologia , Agricultura , Bactérias/genética , Microbiota/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Estresse Fisiológico , Água
8.
Theor Appl Genet ; 133(10): 2761-2773, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32572549

RESUMO

KEY MESSAGE: Significant introgression-by-environment interactions are observed for traits throughout development from small introgressed segments of the genome. Relatively small genomic introgressions containing quantitative trait loci can have significant impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects for the same introgression can vary quite substantially in different environments due to introgression-by-environment interactions. To study potential patterns of introgression-by-environment interactions, fifteen near-isogenic lines (NILs) with > 90% B73 genetic background and multiple Mo17 introgressions were grown in 16 different environments. These environments included five geographical locations with multiple planting dates and multiple planting densities. The phenotypic impact of the introgressions was evaluated for up to 26 traits that span different growth stages in each environment to assess introgression-by-environment interactions. Results from this study showed that small portions of the genome can drive significant genotype-by-environment interaction across a wide range of vegetative and reproductive traits, and the magnitude of the introgression-by-environment interaction varies across traits. Some introgressed segments were more prone to introgression-by-environment interaction than others when evaluating the interaction on a whole plant basis throughout developmental time, indicating variation in phenotypic plasticity throughout the genome. Understanding the profile of introgression-by-environment interaction in NILs is useful in consideration of how small introgressions of QTL or transgene containing regions might be expected to impact traits in diverse environments.


Assuntos
Interação Gene-Ambiente , Genoma de Planta , Locos de Características Quantitativas , Zea mays/genética , Meio Ambiente , Genótipo , Fenótipo
9.
PLoS Genet ; 13(6): e1006823, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28582424

RESUMO

Salinity is a major factor limiting crop productivity. Rice (Oryza sativa), a staple crop for the majority of the world, is highly sensitive to salinity stress. To discover novel sources of genetic variation for salt tolerance-related traits in rice, we screened 390 diverse accessions under 14 days of moderate (9 dS·m-1) salinity. In this study, shoot growth responses to moderate levels of salinity were independent of tissue Na+ content. A significant difference in root Na+ content was observed between the major subpopulations of rice, with indica accessions displaying higher root Na+ and japonica accessions exhibiting lower root Na+ content. The genetic basis of the observed variation in phenotypes was elucidated through genome-wide association (GWA). The strongest associations were identified for root Na+:K+ ratio and root Na+ content in a region spanning ~575 Kb on chromosome 4, named Root Na+ Content 4 (RNC4). Two Na+ transporters, HKT1;1 and HKT1;4 were identified as candidates for RNC4. Reduced expression of both HKT1;1 and HKT1;4 through RNA interference indicated that HKT1;1 regulates shoot and root Na+ content, and is likely the causal gene underlying RNC4. Three non-synonymous mutations within HKT1;1 were present at higher frequency in the indica subpopulation. When expressed in Xenopus oocytes the indica-predominant isoform exhibited higher inward (negative) currents and a less negative voltage threshold of inward rectifying current activation compared to the japonica-predominant isoform. The introduction of a 4.5kb fragment containing the HKT1;1 promoter and CDS from an indica variety into a japonica background, resulted in a phenotype similar to the indica subpopulation, with higher root Na+ and Na+:K+. This study provides evidence that HKT1;1 regulates root Na+ content, and underlies the divergence in root Na+ content between the two major subspecies in rice.


Assuntos
Potenciais de Ação , Proteínas de Transporte de Cátions/genética , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo Genético , Sódio/metabolismo , Simportadores/genética , Alelos , Animais , Proteínas de Transporte de Cátions/metabolismo , Especiação Genética , Transporte de Íons , Oryza/classificação , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Potássio/metabolismo , Simportadores/metabolismo , Xenopus
10.
Mol Plant Microbe Interact ; 32(4): 392-400, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30261155

RESUMO

The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.


Assuntos
Basidiomycota , Brachypodium , Resistência à Doença , Genoma de Planta , Basidiomycota/fisiologia , Brachypodium/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genoma de Planta/genética , Humanos , Doenças das Plantas/genética
11.
BMC Genomics ; 20(1): 904, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775625

RESUMO

BACKGROUND: Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, has been one of the most devastating pathogens affecting soybean production. In the United States alone, SCN damage accounted for more than $1 billion loss annually. With a narrow genetic background of the currently available SCN-resistant commercial cultivars, high risk of resistance breakdown can occur. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify QTL, SNP markers, and candidate genes associated with soybean leaf chlorophyll content tolerance to SCN infection, and to carry out a genomic selection (GS) study for the chlorophyll content tolerance. RESULTS: A total of 172 soybean genotypes were evaluated for the effect of SCN HG Type 1.2.3.5.6.7 (race 4) on soybean leaf chlorophyll. The soybean lines were genotyped using a total of 4089 filtered and high-quality SNPs. Results showed that (1) a large variation in SCN tolerance based on leaf chlorophyll content indices (CCI); (2) a total of 22, 14, and 16 SNPs associated with CCI of non-SCN-infected plants, SCN-infected plants, and reduction of CCI SCN, respectively; (3) a new locus of chlorophyll content tolerance to SCN mapped on chromosome 3; (4) candidate genes encoding for Leucine-rich repeat protein, plant hormone signaling molecules, and biomolecule transporters; and (5) an average GS accuracy ranging from 0.31 to 0.46 with all SNPs and varying from 0.55 to 0.76 when GWAS-derived SNP markers were used across five models. This study demonstrated the potential of using genome-wide selection to breed chlorophyll-content-tolerant soybean for managing SCN. CONCLUSIONS: In this study, soybean accessions with higher CCI under SCN infestation, and molecular markers associated with chlorophyll content related to SCN were identified. In addition, a total of 15 candidate genes associated with chlorophyll content tolerance to SCN in soybean were also identified. These candidate genes will lead to a better understanding of the molecular mechanisms that control chlorophyll content tolerance to SCN in soybean. Genomic selection analysis of chlorophyll content tolerance to SCN showed that using significant SNPs obtained from GWAS could provide better GS accuracy.


Assuntos
Clorofila/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Glycine max/genética , Glycine max/metabolismo , Interações Hospedeiro-Parasita/genética , Animais , Genes de Plantas , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Glycine max/parasitologia , Tylenchoidea
13.
BMC Genomics ; 15: 740, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174348

RESUMO

BACKGROUND: Advances in genotyping technology, such as genotyping by sequencing (GBS), are making genomic prediction more attractive to reduce breeding cycle times and costs associated with phenotyping. Genomic prediction and selection has been studied in several crop species, but no reports exist in soybean. The objectives of this study were (i) evaluate prospects for genomic selection using GBS in a typical soybean breeding program and (ii) evaluate the effect of GBS marker selection and imputation on genomic prediction accuracy. To achieve these objectives, a set of soybean lines sampled from the University of Nebraska Soybean Breeding Program were genotyped using GBS and evaluated for yield and other agronomic traits at multiple Nebraska locations. RESULTS: Genotyping by sequencing scored 16,502 single nucleotide polymorphisms (SNPs) with minor-allele frequency (MAF) > 0.05 and percentage of missing values ≤ 5% on 301 elite soybean breeding lines. When SNPs with up to 80% missing values were included, 52,349 SNPs were scored. Prediction accuracy for grain yield, assessed using cross validation, was estimated to be 0.64, indicating good potential for using genomic selection for grain yield in soybean. Filtering SNPs based on missing data percentage had little to no effect on prediction accuracy, especially when random forest imputation was used to impute missing values. The highest accuracies were observed when random forest imputation was used on all SNPs, but differences were not significant. A standard additive G-BLUP model was robust; modeling additive-by-additive epistasis did not provide any improvement in prediction accuracy. The effect of training population size on accuracy began to plateau around 100, but accuracy steadily climbed until the largest possible size was used in this analysis. Including only SNPs with MAF > 0.30 provided higher accuracies when training populations were smaller. CONCLUSIONS: Using GBS for genomic prediction in soybean holds good potential to expedite genetic gain. Our results suggest that standard additive G-BLUP models can be used on unfiltered, imputed GBS data without loss in accuracy.


Assuntos
Técnicas de Genotipagem/métodos , Glycine max/genética , Análise de Sequência de DNA/métodos , Cruzamento , Frequência do Gene , Genoma de Planta , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Glycine max/classificação
14.
Plant Genome ; 16(1): e20285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36447395

RESUMO

Increasing the rate of genetic gain for seed yield remains the primary breeding objective in both public and private soybean [Glycine max (L.) Merr.] breeding programs. Genomic selection (GS) has the potential to accelerate the rate of genetic gain for soybean seed yield. Limited studies to date have validated GS accuracy and directly compared GS with phenotypic selection (PS), and none have been reported in soybean. This study conducted the first empirical validation of GS for increasing seed yield using over 1,500 lines and over 7 yr (2010-2016) of replicated experiments in the University of Nebraska-Lincoln soybean breeding program. The study was designed to capture the varying genetic relatedness of the training population to three validation sets: two large biparental populations (TBP-1 and TBP-2) and a large validation set comprised of 457 preselected advanced lines derived from 45 biparental populations (TMP). We found that prediction accuracy (.54) realized in our validation experiments was comparable with what we obtained from a series of cross-validation experiments (.64). Both GS and PS were more effective for increasing the population mean performance compared with random selection (RS). We found a selection advantage of GS over PS, where higher genetic gain and identification of top-performing lines was maximized at 10-20% selected proportion. Genomic selection led to small increases in genetic similarity when compared with PS and RS presumably because of a significant shift on allelic frequencies toward the extremes, suggesting that it could erode genetic diversity more quickly. Overall, we found that GS can perform as effectively as PS but that measures should be considered to protect against loss of genetic variance when using GS.


Assuntos
Glycine max , Seleção Genética , Fenótipo , Glycine max/genética , Melhoramento Vegetal , Genômica , Sementes
15.
Plant Genome ; 16(2): e20310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988044

RESUMO

The USDA Soybean Isoline Collection has been an invaluable resource for the soybean genetics and breeding community. This collection, established in 1972, consists of 611 near-isogenic lines (NILs) carrying one or multiple genes conferring traits that had been determined to exhibit Mendelian inheritance. It has been used in multiple studies on the genetic basis, physiology, and agronomy of these qualitative traits. Here, we used publicly available genotype (SoySNP50K), phenotype, and pedigree data on this collection to characterize the isogenicity of the NILs and identify chromosomal positions of unmapped genes. A total of 368 NILs had at least 80% identity to their recurrent parent and, thus, were useful for what can be called introgression mapping. Both on-target and off-target introgressions were evaluated. The size of on-target introgressions into individual NILs ranged from 61 kb to 8.4 Mb, whereas off-target introgressions ranged from 2.6 kb to 54.8 Mb. The observed large off-target introgressions indicated that some NILs carry introgressions nearly the size of an entire chromosome. By applying introgression mapping to genes that had never been mapped, we identified the likely chromosomal positions of six such genes: ab, im, lo, Np, pc, and Rpm. The size of mapping intervals was large in some cases (10.28 Mb for im) but small in others (0.21 Mb for Np). The results reported herein will provide future researchers with a resource to help select informative NILs for future studies, and provide a starting point to further fine map, and ultimately clone and functionally characterize these six soybean genes.


Assuntos
Glycine max , Locos de Características Quantitativas , Marcadores Genéticos , Melhoramento Vegetal , Glycine max/genética , Estados Unidos , United States Department of Agriculture
16.
Plant Genome ; 16(2): e20304, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792954

RESUMO

Early canopy coverage is a desirable trait that is a major determinant of yield in soybean (Glycine max). Variation in traits comprising shoot architecture can influence canopy coverage, canopy light interception, canopy-level photosynthesis, and source-sink partitioning efficiency. However, little is known about the extent of phenotypic diversity of shoot architecture traits and their genetic control in soybean. Thus, we sought to understand the contribution of shoot architecture traits to canopy coverage and to determine the genetic control of these traits. We examined the natural variation for shoot architecture traits in a set of 399 diverse maturity group I soybean (SoyMGI) accessions to identify relationships between traits, and to identify loci that are associated with canopy coverage and shoot architecture traits. Canopy coverage was correlated with branch angle, number of branches, plant height, and leaf shape. Using previously collected 50K single nucleotide polymorphism data, we identified quantitative trait locus (QTL) associated with branch angle, number of branches, branch density, leaflet shape, days to flowering, maturity, plant height, number of nodes, and stem termination. In many cases, QTL intervals overlapped with previously described genes or QTL. We also found QTL associated with branch angle and leaflet shape located on chromosomes 19 and 4, respectively, and these QTL overlapped with QTL associated with canopy coverage, suggesting the importance of branch angle and leaflet shape in determining canopy coverage. Our results highlight the role individual architecture traits play in canopy coverage and contribute information on their genetic control that could help facilitate future efforts in their genetic manipulation.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Fenótipo , Folhas de Planta , Fotossíntese
17.
Plant Genome ; 16(1): e20270, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411593

RESUMO

Increasing rate of genetic gain for key agronomic traits through genomic selection requires the development of new molecular methods to run genome-wide single-nucleotide polymorphisms (SNPs). The main limitation of current methods is the cost is too high to screen breeding populations. Molecular inversion probes (MIPs) are a targeted genotyping-by-sequencing (GBS) method that could be used for soybean [Glycine max (L.) Merr.] that is both cost-effective, high-throughput, and provides high data quality to screen breeder's germplasm for genomic selection. A 1K MIP SNP set was developed for soybean with uniformly distributed markers across the genome. The SNPs were selected to maximize the number of informative markers in germplasm being tested in soybean breeding programs located in the northern-central and middle-southern regions of the United States. The 1K SNP MIP set was tested on diverse germplasm and a recombinant inbred line (RIL) population. Targeted sequencing with MIPs obtained an 85% enrichment for the targeted SNPs. The MIP genotyping accuracy was 93% overall, whereas homozygous call accuracy was 98% with <10% missing data. The accuracy of MIPs combined with its low per-sample cost makes it a powerful tool to enable genomic selection within soybean breeding programs.


Assuntos
Genoma de Planta , Genômica , Técnicas de Genotipagem , Glycine max , Técnicas de Sonda Molecular , Sondas Moleculares , Seleção Genética , Glycine max/genética , Técnicas de Genotipagem/economia , Técnicas de Genotipagem/métodos , Sondas Moleculares/genética , Técnicas de Sonda Molecular/economia , Heterozigoto , Fluxo de Trabalho , Análise de Dados , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Alinhamento de Sequência , Genótipo , Reprodutibilidade dos Testes , Estados Unidos
18.
Front Plant Sci ; 14: 1270546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053759

RESUMO

Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.

19.
Front Plant Sci ; 13: 843065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432391

RESUMO

Monoculture cropping systems currently dominate temperate agroecosystems. However, intercropping can provide valuable benefits, including greater yield stability, increased total productivity, and resilience in the face of pest and disease outbreaks. Plant breeding efforts in temperate field crops are largely focused on monoculture production, but as intercropping becomes more widespread, there is a need for cultivars adapted to these cropping systems. Cultivar development for intercropping systems requires a systems approach, from the decision to breed for intercropping systems through the final stages of variety testing and release. Design of a breeding scheme should include information about species variation for performance in intercropping, presence of genotype × management interaction, observation of key traits conferring success in intercropping systems, and the specificity of intercropping performance. Together this information can help to identify an optimal selection scheme. Agronomic and ecological knowledge are critical in the design of selection schemes in cropping systems with greater complexity, and interaction with other researchers and key stakeholders inform breeding decisions throughout the process. This review explores the above considerations through three case studies: (1) forage mixtures, (2) perennial groundcover systems (PGC), and (3) soybean-pennycress intercropping. We provide an overview of each cropping system, identify relevant considerations for plant breeding efforts, describe previous breeding focused on the cropping system, examine the extent to which proposed theoretical approaches have been implemented in breeding programs, and identify areas for future development.

20.
Front Plant Sci ; 13: 889066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574141

RESUMO

Adaptation of soybean cultivars to the photoperiod in which they are grown is critical for optimizing plant yield. However, despite its importance, only the major loci conferring variation in flowering time and maturity of US soybean have been isolated. By contrast, over 200 genes contributing to floral induction in the model organism Arabidopsis thaliana have been described. In this work, putative alleles of a library of soybean orthologs of these Arabidopsis flowering genes were tested for their latitudinal distribution among elite US soybean lines developed in the United States. Furthermore, variants comprising the alleles of genes with significant differences in latitudinal distribution were assessed for amino acid conservation across disparate genera to infer their impact on gene function. From these efforts, several candidate genes from various biological pathways were identified that are likely being exploited toward adaptation of US soybean to various maturity groups.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa