Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(8): 4243-4251, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047036

RESUMO

Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.


Assuntos
Sorghum/genética , Striga/genética , Adaptação Fisiológica , Variação Genética , Genoma de Planta , Genômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Daninhas/genética , Plantas Daninhas/fisiologia , Sorghum/fisiologia , Striga/fisiologia
2.
Proc Biol Sci ; 287(1937): 20202041, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081615

RESUMO

Biodiversity can affect the properties of groups of organisms, such as ecosystem function and the persistence of colonizing populations. Genomic data offer a newly available window to diversity, complementary to other measures like taxonomic or phenotypic diversity. We tested whether native genetic diversity in field experimental stands of Arabidopsis thaliana affected their aboveground biomass and fecundity in their colonized range. We constructed some stands of genotypes that we a priori predicted would differ in performance or show overyielding. We found no relationship between genetic diversity and stand total biomass. However, increasing stand genetic diversity increased fecundity in high-resource conditions. Polyculture (multiple genotype) stands consistently yielded less biomass than expected based on the yields of component genotypes in monoculture. This under-yielding was strongest in stands with late-flowering and high biomass genotypes, potentially due to interference competition by these genotypes. Using a new implementation of association mapping, we identified genetic loci whose diversity was associated with stand-level yield, revealing a major flowering time locus associated with under-yielding of polycultures. Our field experiment supports community ecology studies that find a range of diversity-function relationships. Nevertheless, our results suggest diversity in colonizing propagule pools can enhance population fitness. Furthermore, interference competition among genotypes differing in flowering time might limit the advantages of polyculture.


Assuntos
Arabidopsis , Biodiversidade , Genótipo , Biomassa , Ecossistema , Genômica
3.
New Phytol ; 227(4): 1060-1072, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267968

RESUMO

Populations often exhibit genetic diversity in traits involved in responses to abiotic stressors, but what maintains this diversity is unclear. Arabidopsis thaliana exhibits high within-population variation in drought response. One hypothesis is that competition, varying at small scales, promotes diversity in resource use strategies. However, little is known about natural variation in competition effects on Arabidopsis physiology. We imposed drought and competition treatments on diverse genotypes. We measured resource economics traits, physiology, and fitness to characterize plasticity and selection in response to treatments. Plastic responses to competition differed depending on moisture availability. We observed genotype-drought-competition interactions for relative fitness: competition had little effect on relative fitness under well-watered conditions, whereas competition caused rank changes in fitness under drought. Early flowering was always selected. Higher δ13 C was selected only in the harshest treatment (drought and competition). Competitive context significantly changed the direction of selection on aboveground biomass and inflorescence height in well-watered environments. Our results highlight how local biotic conditions modify abiotic selection, in some cases promoting diversity in abiotic stress response. The ability of populations to adapt to environmental change may thus depend on small-scale biotic heterogeneity.


Assuntos
Arabidopsis , Adaptação Fisiológica , Arabidopsis/genética , Secas , Fenótipo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa