Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 61(3): 289-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37833060

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Judeus/genética , Homozigoto , Síndrome
2.
Eur J Hum Genet ; 31(10): 1190-1194, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558808

RESUMO

Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNAIle cleavage, consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP c.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that PRORP variants are associated with COXPD54 and that the assessment of 5' leader mitochondrial tRNA processing is a valuable assay for the functional analysis and clinical interpretation of novel PRORP variants.


Assuntos
Perda Auditiva Neurossensorial , Doenças Mitocondriais , Ribonuclease P , Feminino , Humanos , Genótipo , Perda Auditiva Neurossensorial/genética , Homozigoto , Doenças Mitocondriais/genética , RNA de Transferência , Ribonuclease P/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa