Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7887): 105-109, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34732889

RESUMO

Symbiotic N2-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments1-3. Particularly among land plants, N2-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont2,4. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea5. Here we describe an N2-fixing symbiont, 'Candidatus Celerinatantimonas neptuna', that lives inside seagrass root tissue, where it provides ammonia and amino acids to its host in exchange for sugars. As such, this symbiosis is reminiscent of terrestrial N2-fixing plant symbioses. The symbiosis between Ca. C. neptuna and its host Posidonia oceanica enables highly productive seagrass meadows to thrive in the nitrogen-limited Mediterranean Sea. Relatives of Ca. C. neptuna occur worldwide in coastal ecosystems, in which they may form similar symbioses with other seagrasses and saltmarsh plants. Just like N2-fixing microorganisms might have aided the colonization of nitrogen-poor soils by early land plants6, the ancestors of Ca. C. neptuna and its relatives probably enabled flowering plants to invade nitrogen-poor marine habitats, where they formed extremely efficient blue carbon ecosystems7.


Assuntos
Alismatales/microbiologia , Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Simbiose , Alismatales/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Organismos Aquáticos/microbiologia , Ecossistema , Endófitos/metabolismo , Mar Mediterrâneo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165204

RESUMO

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.


Assuntos
Alismatales/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aerobiose , Anaerobiose , Euryarchaeota/classificação , Sedimentos Geológicos , Mar Mediterrâneo , Microbiota , Oxirredução , Filogenia , Especificidade da Espécie
3.
Environ Microbiol ; 21(10): 3780-3795, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31267680

RESUMO

The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment-water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13 C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment-water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Methylococcaceae/metabolismo , Methylophilaceae/metabolismo , Itália , Metagenômica , Microbiota/fisiologia , Oxirredução , Filogenia
4.
Environ Microbiol ; 19(3): 1251-1265, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035767

RESUMO

Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities.


Assuntos
Chlorobi/metabolismo , Cianobactérias/metabolismo , Fontes Termais/microbiologia , Lagos/microbiologia , Oxigênio/metabolismo , Fotossíntese , Sulfetos/metabolismo , Chlorobi/classificação , Chlorobi/genética , Chlorobi/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Compostos Férricos/análise , Compostos Férricos/metabolismo , Florida , Fontes Termais/análise , Lagos/análise , Fotossíntese/fisiologia , Sulfetos/análise
5.
BMC Genomics ; 17(1): 942, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871231

RESUMO

BACKGROUND: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. RESULTS: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. CONCLUSIONS: We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.


Assuntos
Adaptação Biológica/genética , Imunidade Inata/genética , Oligoquetos/genética , Oligoquetos/metabolismo , Proteoma , Simbiose/genética , Transcriptoma , Adaptação Biológica/imunologia , Sequência de Aminoácidos , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Modelos Biológicos , Oligoquetos/imunologia , Proteômica/métodos , Receptores de Reconhecimento de Padrão/metabolismo , Simbiose/imunologia
6.
Environ Microbiol ; 17(12): 5023-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26013766

RESUMO

The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Oligoquetos/microbiologia , Água do Mar/microbiologia , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Região do Mediterrâneo , Oxirredução , Espectrometria de Massa de Íon Secundário , Compostos de Enxofre/metabolismo , Simbiose
7.
Proc Natl Acad Sci U S A ; 109(24): E1558-67, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22615403

RESUMO

We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O(2) and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.


Assuntos
Antozoários , Sedimentos Geológicos , Animais , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Eletroforese em Gel de Poliacrilamida , Sulfeto de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Oxigênio/análise , RNA Ribossômico 16S/genética
8.
Proc Natl Acad Sci U S A ; 109(19): E1173-82, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517752

RESUMO

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Oligoquetos/metabolismo , Proteômica/métodos , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Cromatografia Líquida de Alta Pressão , Ecossistema , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético , Interações Hospedeiro-Patógeno , Hidrogênio/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Oligoquetos/microbiologia , Água do Mar
9.
Environ Microbiol ; 16(12): 3638-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24552661

RESUMO

Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity.


Assuntos
Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Fontes Hidrotermais , Poliquetos/microbiologia , Poliquetos/fisiologia , Simbiose , Animais , Sequência de Bases , Ciclo do Carbono , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Genes de RNAr , Variação Genética , Hibridização in Situ Fluorescente , Mar Mediterrâneo , Dados de Sequência Molecular , Oxirredução , Filogenia , Poliquetos/classificação , RNA Ribossômico 16S/genética , Enxofre/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(29): 12078-83, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21709249

RESUMO

Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria--the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as "Candidatus Riegeria galateiae" based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal-chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells.


Assuntos
Evolução Biológica , Filogenia , Rhodospirillales/genética , Simbiose , Turbelários/microbiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Análise por Conglomerados , Primers do DNA/genética , Hibridização in Situ Fluorescente , Funções Verossimilhança , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Genéticos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhodospirillales/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie , Análise Espectral Raman , Turbelários/ultraestrutura
11.
Sci Total Environ ; 928: 172288, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599394

RESUMO

Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.


Assuntos
Plásticos Biodegradáveis , Biodegradação Ambiental , Poluentes Químicos da Água , Mar Mediterrâneo , Poluentes Químicos da Água/análise , Bactérias/classificação , Água do Mar/microbiologia , Monitoramento Ambiental , Microbiota , Plásticos/análise , Fungos
12.
Sci Total Environ ; 905: 167458, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37777124

RESUMO

Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios. The in-situ tests were set up in the Mediterranean Sea on the Island of Elba, Italy where PHB-tensile bars were lodged in the sediments. This created a water-exposed aerobic and mud-planted anaerobic scenario. The ex-situ tests were modeled after in-situ tests and performed in temperature-controlled tanks. The PHB-related biofilms were harvested after 240 days of exposure along with planktonic bacteria, and particle- and sediment-related biofilm. The bacterial composition was elucidated using 16S rDNA sequencing. Biofilms harvested from the in-situ test were more diverse, less even, and contained more rare species compared to biofilms from the ex-situ test. The PHB-related biofilm was characterized by a higher abundance of the bacterial order Desulfobacterales. The composition of PHB-related biofilm varied significantly between the two tests and between aerobic and anaerobic conditions. The composition of PHB-related biofilm was significantly different from planktonic bacteria, particle, and sediment-related biofilm, showing the influence of PHB on the biofilm composition. Thus, the ex-situ tank test for PHB degradation cannot, in terms of bacterial composition, simulate the in-situ conditions to their full extent.


Assuntos
Bactérias , Biofilmes , Bactérias/genética , Água , Temperatura , Plâncton
13.
PeerJ ; 9: e11981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434671

RESUMO

The seafloor is considered the major sink for plastic debris in the world's oceans. Biodegradable polymers are available on the market as a substitute for conventional plastic and could potentially end up in the same environment. To gain more insight into the effects of different sediments on the degradation rate of biodegradable plastic we performed two iterative seawater tank experiments. First, to test the effect of sediment grain size, film of Mater-Bi HF03V, a blend of thermoplastic starch and biodegradable polyesters, was placed on the surface of mud as well as on four different grain size fractions of beach sand. Disintegration half-life was shortest on mud (139 days) and increased with the grain size of the beach sediment fractions (63-250 µm: 296 days; 250-500 µm: 310 days; 500-1,000 µm: 438 days; >1,000 µm: 428 days). We assume that the higher surface-to-volume ratio in fine sediment compared to coarse sediment led to a higher bacterial abundance and thus to faster disintegration rates. In a follow-up experiment, the <500 µm fraction of sediment from four different beaches around Isola d'Elba, Italy, was used to test plastic disintegration as above. Additionally, polyhydroxybutyrate (PHB, MIREL P5001) was used as a positive control and high-density polyethylene (HD-PE) as a negative control. No disintegration was observed for HD-PE. Mater-Bi HF03V and PHB disintegrated significantly differently on sediment from different sites, with half-lives of Mater-Bi HF03V ranging from 72 to 368 days and of PHB from 112 to 215 days. Here, the half-life was shortest on slightly coarser sediment and at potentially anthropogenically impacted sites. We assume that the effect of the grain size on the disintegration rate was masked by other parameters influencing the microbial community and activity. Understanding the parameters driving biodegradation is key to reliably report the range of disintegration rates occurring under the various conditions in different ecosystems.

14.
Front Microbiol ; 12: 673553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220756

RESUMO

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.

15.
Environ Microbiol ; 12(8): 2204-18, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966914

RESUMO

The shrimp Rimicaris exoculata from hydrothermal vents on the Mid-Atlantic Ridge (MAR) harbours bacterial epibionts on specialized appendages and the inner surfaces of its gill chamber. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH), we examined the R. exoculata epibiosis from four vents sites along the known distribution range of the shrimp on the MAR. Our results show that R. exoculata lives in symbiosis with two types of filamentous epibionts. One belongs to the Epsilonproteobacteria, and was previously identified as the dominant symbiont of R. exoculata. The second is a novel gammaproteobacterial symbiont that belongs to a clade consisting exclusively of sequences from epibiotic bacteria of hydrothermal vent animals, with the filamentous sulfur oxidizer Leucothrix mucor as the closest free-living relative. Both the epsilon- and the gammaproteobacterial symbionts dominated the R. exoculata epibiosis at all four MAR vent sites despite striking differences between vent fluid chemistry and distances between sites of up to 8500 km, indicating that the symbiosis is highly stable and specific. Phylogenetic analyses of two mitochondrial host genes showed little to no differences between hosts from the four vent sites. In contrast, there was significant spatial structuring of both the gamma- and the epsilonproteobacterial symbiont populations based on their 16S rRNA gene sequences that was correlated with geographic distance along the MAR. We hypothesize that biogeography and host-symbiont selectivity play a role in structuring the epibiosis of R. exoculata.


Assuntos
Decápodes/microbiologia , Epsilonproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Simbiose , Animais , DNA Bacteriano/genética , DNA Mitocondrial/genética , Decápodes/genética , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Brânquias/microbiologia , Fontes Hidrotermais/microbiologia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
PLoS One ; 15(7): e0236579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735596

RESUMO

The pollution of the natural environment, especially the world's oceans, with conventional plastic is of major concern. Biodegradable plastics are an emerging market bringing along potential chances and risks. The fate of these materials in the environment and their possible effects on organisms and ecosystems has rarely been studied systematically and is not well understood. For the marine environment, reliable field test methods and standards for assessing and certifying biodegradation to bridge laboratory respirometric data are lacking. In this work we present newly developed field tests to assess the performance of (biodegradable) plastics under natural marine conditions. These methods were successfully applied and validated in three coastal habitats (eulittoral, benthic and pelagic) and two climate zones (Mediterranean Sea and tropical Southeast Asia). Additionally, a stand-alone mesocosm test system which integrated all three habitats in one technical system at 400-L scale independent from running seawater is presented as a methodological bridge. Films of polyhydroxyalkanoate copolymer (PHA) and low density polyethylene (LD-PE) were used to validate the tests. While LD-PE remained intact, PHA disintegrated to a varying degree depending on the habitat and the climate zone. Together with the existing laboratory standard test methods, the field and mesocosm test systems presented in this work provide a 3-tier testing scheme for the reliable assessment of the biodegradation of (biodegradable) plastic in the marine environment. This toolset of tests can be adapted to other aquatic ecosystems.


Assuntos
Ambiente Controlado , Oceanos e Mares , Plásticos/metabolismo , Biodegradação Ambiental , Cadeia Alimentar , Sedimentos Geológicos/química , Plásticos/química , Plásticos/isolamento & purificação , Água do Mar/química , Temperatura
17.
Environ Microbiol ; 10(12): 3404-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18764872

RESUMO

Gutless oligochaete worms are found worldwide in the pore waters of marine sediments and live in symbiosis with chemoautotrophic sulfur-oxidizing bacteria. In the Mediterranean, two species of gutless oligochaete worms, Olavius algarvensis and O. ilvae, co-occur in sediments around sea grass beds. These sediments have extremely low sulfide concentrations (< 1 microM), raising the question if O. ilvae, as shown previously for O. algarvensis, also harbours sulfate-reducing symbionts that provide its sulfur-oxidizing symbionts with reduced sulfur compounds. In this study, we used fluorescence in situ hybridization (FISH) and comparative sequence analysis of genes for 16S rRNA, sulfur metabolism (aprA and dsrAB), and autotrophic carbon fixation (cbbL) to examine the microbial community of O. ilvae and re-examine the O. algarvensis symbiosis. In addition to the four previously described symbionts of O. algarvensis, in this study a fifth symbiont belonging to the Spirochaetes was found in these hosts. The symbiotic community of O. ilvae was similar to that of O. algarvensis and also included two gammaproteobacterial sulfur oxidizers and two deltaproteobacterial sulfate reducers, but not a spirochete. The phylogenetic and metabolic similarity of the symbiotic communities in these two co-occurring host species that are not closely related to each other indicates that syntrophic sulfur cycling provides a strong selective advantage to these worms in their sulfide-poor environment.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Oligoquetos/microbiologia , Simbiose , Animais , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Sedimentos Geológicos , Hibridização in Situ Fluorescente , Mar Mediterrâneo , Dados de Sequência Molecular , Oligoquetos/fisiologia , Filogenia , Poaceae , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Enxofre/metabolismo
18.
PLoS One ; 13(12): e0207305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566474

RESUMO

Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes. Emission of gas bubbles (predominantly CH4) from unlithified sands was observed at seven spots in an area of 100 m2 at Pomonte (Island of Elba), with a total rate of 234 ml m-2 d-1. The measured carbon isotope values of CH4 of around -18‰ (VPDB) in combination with the measured δ2H value of -120‰ (VSMOW) and the inverse correlation of δ13C-value with carbon number of hydrocarbon gases are characteristic for sites of CH4 formation through abiogenic processes, specifically abiogenic formation of CH4 via reduction of CO2 by H2. The H2 for methanogenesis likely derives from ophiolitic host rock within the Ligurian accretionary prism. The lack of hydrothermal activity allows CH4 gas to become decoupled from the stagnant aqueous phase. Hence no hyperalkaline fluid is currently released at the vent sites. Within the seep area a decrease in porewater sulphate concentrations by ca. 5 mmol/l relative to seawater and a concomitant increase in sulphide and dissolved inorganic carbon (DIC) indicate substantial activity of sulphate-dependent anaerobic oxidation of methane (AOM). In absence of any other dissimilatory pathway, the δ13C-values between -17 and -5‰ in dissolved inorganic carbon and aragonite cements suggest that the inorganic carbon is largely derived from CH4. The formation of seep carbonates is thus microbially induced via anaerobic oxidation of abiotic CH4.


Assuntos
Carbonatos/química , Carbonatos/metabolismo , Metano/química , Metano/metabolismo , Anaerobiose , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ilhas , Itália
19.
Sci Adv ; 4(2): eaao2040, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441359

RESUMO

Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m-2 hour-1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2.


Assuntos
Dióxido de Carbono/química , Ecossistema , Sedimentos Geológicos/química , Animais , Bactérias/metabolismo , Cadeia Alimentar , Invertebrados/fisiologia , Itália , Oxigênio/análise , Porosidade , Água/química
20.
R Soc Open Sci ; 4(10): 170549, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134070

RESUMO

The increasing amount of plastic littered into the sea may provide a new substratum for benthic organisms. These marine fouling communities on plastic have not received much scientific attention. We present, to our knowledge, the first comprehensive analysis of their macroscopic community composition, their primary production and the polymer degradation comparing conventional polyethylene (PE) and a biodegradable starch-based plastic blend in coastal benthic and pelagic habitats in the Mediterranean Sea. The biomass of the fouling layer increased significantly over time and all samples became heavy enough to sink to the seafloor. The fouling communities, consisting of 21 families, were distinct between habitats, but not between polymer types. Positive primary production was measured in the pelagic, but not in the benthic habitat, suggesting that large accumulations of floating plastic could pose a source of oxygen for local ecosystems, as well as a carbon sink. Contrary to PE, the biodegradable plastic showed a significant loss of tensile strength and disintegrated over time in both habitats. These results indicate that in the marine environment, biodegradable polymers may disintegrate at higher rates than conventional polymers. This should be considered for the development of new materials, environmental risk assessment and waste management strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa