Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 47(6): 1815-1831, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31754722

RESUMO

FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas de Ligação a Tacrolimo/fisiologia , Acetilação , Humanos , Fosforilação , Ligação Proteica , Transporte Proteico , Sumoilação , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/metabolismo
2.
Biochem Soc Trans ; 46(1): 51-65, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29273620

RESUMO

The ability to permit gene expression is managed by a set of relatively well known regulatory mechanisms. Nonetheless, this property can also be acquired during a life span as a consequence of environmental stimuli. Interestingly, some acquired information can be passed to the next generation of individuals without modifying gene information, but instead by the manner in which cells read and process such information. Molecular chaperones are classically related to the proper preservation of protein folding and anti-aggregation properties, but one of them, heat-shock protein 90 (Hsp90), is a refined sensor of protein function facilitating the biological activity of properly folded client proteins that already have a preserved tertiary structure. Interestingly, Hsp90 can also function as a critical switch able to regulate biological responses due to its association with key client proteins such as histone deacetylases or DNA methylases. Thus, a growing amount of evidence has connected the action of Hsp90 to post-translational modifications of soluble nuclear factors, DNA, and histones, which epigenetically affect gene expression upon the onset of an unfriendly environment. This response is commanded by the activation of the transcription factor heat-shock factor 1 (HSF1). Even though numerous stresses of diverse nature are known to trigger the stress response by activation of HSF1, it is still unknown whether there are different types of molecular sensors for each type of stimulus. In the present review, we will discuss various aspects of the regulatory action of HSF1 and Hsp90 on transcriptional regulation, and how this regulation may affect genetic assimilation mechanisms and the health of individuals.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP90/fisiologia , Fatores de Transcrição de Choque Térmico/fisiologia , Animais , Variação Genética , Desacetilase 6 de Histona/fisiologia , Humanos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Transcrição Gênica/fisiologia
3.
Arch Virol ; 163(7): 1769-1778, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29536193

RESUMO

A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.


Assuntos
Vírus da Febre Aftosa/genética , Replicon , Proteínas não Estruturais Virais/química , Replicação Viral/genética , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Linhagem Celular , Núcleo Celular/virologia , Cricetinae , Replicação do DNA , Febre Aftosa/virologia , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/fisiologia , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Luciferases , Mutação , Domínios Proteicos , Deleção de Sequência , Proteínas não Estruturais Virais/genética
4.
Arch Virol ; 162(8): 2279-2286, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28421368

RESUMO

Recombinant protein 3A-EGFP, a fusion construct between foot-and-mouth disease virus (FMDV) non-structural protein 3A and the enhanced green fluorescent protein (EGFP) was expressed in BL21-DE3 cells. The identity of the partially purified protein 3A-EGFP was confirmed by its reactivity with sera from cattle infected with FMDV and with a monoclonal antibody specific for FMDV-3ABC (MAb3H7) in Western blot assays. No reactivity was observed with sera from uninfected vaccinated animals. The performance of 3A-EGFP as an antigen in an indirect enzyme-linked immunosorbent assay (ELISA) was assessed and compared with that of a previously developed and validated capture ELISA that uses a 3ABC recombinant antigen (3ABC ELISA) and has been widely applied for serological surveys in Argentina. Parallel analysis of strongly and weakly positive reference sera from infected animals and 329 serum samples from uninfected vaccinated cattle showed that the 3A-EGFP antigen unequivocally identifies sera from FMDV-infected cattle with similar performance to its 3ABC counterpart. The 3A-EGFP ELISA is simpler and faster to perform than the 3ABC ELISA, since it does not require a capture step with a specific antibody. Moreover, the expression and storage of the recombinant 3A-EGFP is simplified by the absence of residual autoproteolytic activity associated to the 3C sequence. We conclude that the 3A-EGFP ELISA constitutes a promising screening method in serosurveys to determine whether or not animals are infected with FMDV.


Assuntos
Doenças dos Bovinos/diagnóstico , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Antivirais/sangue , Argentina , Bovinos , Doenças dos Bovinos/virologia , Proteínas de Fluorescência Verde/imunologia , Proteínas Recombinantes de Fusão/imunologia
5.
Biomolecules ; 9(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717249

RESUMO

Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas de Choque Térmico HSP90/química , Humanos , Imunofilinas/química , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
6.
Methods Mol Biol ; 1966: 1-5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041734

RESUMO

In this chapter, we summarize the birth of the field of nuclear receptors. These receptors exhibit a multitude of roles in cell biology and hence have attracted a great deal of interest in the drug discovery field. It is not certain whether these receptors evolved independently or an ancestral protein acquired various functions upon binding to preexisting small molecules, ligands. Currently, members of this receptor superfamily are categorized in six groups, including "orphan receptors." Research in the area has resulted in several clinically used drugs and continues to reveal further previously unknown roles for these receptors paving the road toward more valuable discoveries in the future.


Assuntos
Receptores Nucleares Órfãos/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Animais , Humanos , Ligantes , Receptores Nucleares Órfãos/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30148160

RESUMO

In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa