RESUMO
Membrane ion channels and transporters are key determinants of cardiac electrical function. Their expression is affected by cardiac region, hemodynamic properties, heart-rate changes, neurohormones and cardiac disease. One of the important determinants of ion-channel function is the level of ion-channel subunit mRNA expression, which governs the production of ion-channel proteins that traffic to the cell-membrane to form functional ion-channels. Ion-channel mRNA-expression profiling can be performed with cDNA microarrays or high-throughput reverse transcription/polymerase chain reaction (PCR) methods. Expression profiling has been applied to evaluate the dependence of ion-channel expression on cardiac region, revealing the molecular basis of regionally-controlled electrical properties as well as the molecular determinants of specialized electrical functions like pacemaking activity. Ion-channel remodeling occurs with cardiac diseases like heart failure, congenital repolarization abnormalities, and atrial fibrillation, and expression profiling has provided insights into the mechanisms by which these conditions affect cardiac electrical stability. Expression profiling has also shown how hormonal changes, antiarrhythmic drugs, cardiac development and altered heart rate affect ion-channel expression patterns to modify cardiac electrical function and sometimes to produce cardiac rhythm disturbances. This article reviews the information obtained to date with the application of cardiac ion-channel expression profiling. With increasing availability and efficiency of high-throughput PCR methods for ion-channel subunit mRNA-expression characterization, it is likely that the application of ion-channel expression profiling will increase and that it will provide important new insights into the determinants of cardiac electrical function in both physiological and pathological situations.
Assuntos
Coração/fisiologia , Coração/fisiopatologia , Canais Iônicos/genética , Miocárdio/metabolismo , RNA Mensageiro/genética , Animais , Arritmias Cardíacas/genética , Fibrilação Atrial/genética , Perfilação da Expressão Gênica , HumanosRESUMO
Cardiac fibroblasts contribute to the structure and function of the myocardium. However their involvement in electrophysiological processes remains unclear; particularly in pathological situations when they proliferate and develop fibrosis. We have identified the connexins involved in gap junction channels between fibroblasts from adult mouse heart and characterized their functional coupling. RT-PCR and Western blotting results show that mRNA and proteins of connexin40 and connexin43 are expressed in cultured cardiac fibroblasts, while Cx45 is not detected. Analysis of gap junctional communications established by these connexins with the gap-FRAP technique demonstrates that fibroblasts are functionally coupled. The time constant of permeability, k, calculated from the fluorescence recovery curves between cell pairs is 0.066+/-0.005 min(-1) (n = 65). Diffusion analysis of Lucifer Yellow through gap junction channels with the scrape-loading method demonstrates that when they are completely confluent, a majority of fibroblasts are coupled forming an interconnecting network over a distance of several hundred micrometers. These data show that cardiac fibroblasts express connexin40 and connexin43 which are able to establish functional communications through homo and/or heterotypic junctions to form an extensive coupled cell network. It should then be interesting to study the conditions to improve efficiency of this coupling in pathological conditions.
Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Fibroblastos/metabolismo , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/metabolismo , Miocárdio , Animais , Células Cultivadas , Conexina 43/genética , Conexinas/genética , Fibroblastos/citologia , Junções Comunicantes/química , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Proteína alfa-5 de Junções ComunicantesRESUMO
In cardiac hypertrophy, both excessive enlargement of cardiac myocytes (CMs) and progressive fibrosis are known to occur simultaneously. To investigate the nature of interactions between ventricular CMs and cardiac fibroblasts (CFs) in these conditions, we have established a "dedifferentiated model" of adult murine CMs in coculture with CFs. In such a model, which is recognized to study cardiac cell hypertrophy in vitro, dedifferentiated CMs in culture and in coculture were characterized by immunopositive staining to ANP (atrial natriuretic peptide) and beta-myosin heavy chain (beta-MHC). The results confirm that ANP secretion by CMs was significantly increased during the cultures. The increase size of cultured CMs was significantly higher in CM/CF cocultures than in CM cultures which was also observed when CMs were cultured with fibroblast conditioned medium (FCM). In addition, fibroblast proliferation studies showed that CMs favored fibroblast adhesion and/or growth at the beginning of the coculture and fibroblast proliferation throughout the time course of the coculture. Furthermore, a significant level of interleukin-6 (IL-6) production was detected by ELISA in CM/CF cocultures. A similar higher increase was observed when CMs were cultured in the presence of FCM. These results demonstrate that CFs enhance myocyte hypertrophy and that CMs regulate fibroblast adhesion and/or proliferation, suggesting a paracrine interaction between CMs and CFs which could involve IL-6.
Assuntos
Proliferação de Células , Fibroblastos/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Biomarcadores , Cardiomegalia , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Fibroblastos/citologia , Hipertrofia , Camundongos , Miocárdio/patologia , Cadeias Pesadas de Miosina/metabolismo , Miosinas Ventriculares/metabolismoRESUMO
The process of cardiac hypertrophy is considered to involve two components: that of cardiac myocyte (CM) enlargement and cardiac fibroblast (CF) proliferation. The interleukin-6 (IL-6) family cytokines have been implicated in a variety of cellular and molecular interactions between myocytes and non-myocytes (NCMs), which in turn have important roles in the development of cardiac hypertrophy. In the study of these interactions, we previously detected very high levels of IL-6 in supernatants of a "dedifferentiated model" of adult ventricular CMs cultured with CFs. In the present study, we have used this in vitro coculture system to examine how IL-6 is involved in the interactions between CMs and CFs during CM hypertrophy and CF proliferation. IL-6 and its signal transducer, 130-kDa glycoprotein (gp130), were detected by immunostaining cultured CMs and CFs with anti-IL-6 or anti-gp130 antibodies. Addition of anti-IL-6 or anti-gp130 antagonist antibodies into CM/CF cocultures induced a significant decrease in expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (beta-MHC) in CMs. The presence of IL-6 antagonist also resulted in a decrease in the surface area of 12-day-old CMs cultured with CFs or in the presence of fibroblast conditioned medium (FCM), and decreased fibroblast proliferation in CM/CF cocultures, particularly in the presence of a gp130 antagonist. The results also show that angiotensin II (AngII) is mainly secreted by CFs and induces IL-6 secretion in CMs cultured with CFs or with FCM. In addition, the effects of IL-6 on cardiomyocyte hypertrophy and fibroblast proliferation were inhibited by addition of the AT-1 receptor antagonist, losartan. These results suggest that IL-6 contributes significantly to CM hypertrophy by an autocrine pathway and to fibroblast proliferation by a paracrine pathway and that these effects could be mediated by AngII.