Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Gen Comp Endocrinol ; 337: 114261, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907529

RESUMO

Global climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success. However, more research is needed to investigate the relationships between these potential links. Using data collected from 106 incubating female common eiders (Somateria mollissima) at six Arctic and sub-Arctic colonies, we examined whether the relationship between individual foraging ecology (assessed using δ13C, δ15N) and total Hg (THg) exposure predicted PRL levels. We found a significant, complex interaction between δ13C, δ15N and THg on PRL, suggesting that individuals cumulatively foraging at lower trophic levels, in phytoplankton-dominant environments, and with the highest THg levels had the most constant significant relationship PRL levels. Cumulatively, these three interactive variables resulted in lowered PRL. Overall, results demonstrate the potential downstream and cumulative implications of environmentally induced changes in foraging ecology, in combination with THg exposure, on hormones known to influence reproductive success in seabirds. These findings are notable in the context of continuing environmental and food web changes in Arctic systems, which may make seabird populations more susceptible to ongoing stressors.


Assuntos
Ecossistema , Mercúrio , Humanos , Animais , Feminino , Poder Familiar , Patos , Cadeia Alimentar , Organismos Aquáticos , Regiões Árticas , Hormônios , Monitoramento Ambiental/métodos
2.
Proc Biol Sci ; 289(1981): 20220300, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36000233

RESUMO

Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.


Assuntos
Aves Canoras , Animais , Regiões Árticas , Resposta ao Choque Térmico , Reprodução , Temperatura
3.
Oecologia ; 200(3-4): 503-514, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229693

RESUMO

Organisms must overcome environmental limitations to optimize their investment in life history stages to maximize fitness. Human-induced climate change is generating increasingly variable environmental conditions, impacting the demography of prey items and, therefore, the ability of consumers to successfully access resources to fuel reproduction. While climate change effects are especially pronounced in the Arctic, it is unknown whether organisms can adjust foraging decisions to match such changes. We used a 9-year blood plasma δ13C and δ15N data set from over 700 pre-breeding Arctic common eiders (Somateria mollissima) to assess breeding-stage and inter-annual variation in isotopic niche, and whether inferred trophic flexibility was related to colony-level breeding parameters and environmental variation. Eider blood isotope values varied both across years and breeding stages, and combined with only weak relationships between isotopic metrics and environmental conditions suggests that pre-breeding eiders can make flexible foraging decisions to overcome constraints imposed by local abiotic conditions. From an investment perspective, an inshore, smaller isotopic niche predicted a greater probability to invest in reproduction, but was not related to laying phenology. Proximately, our results provide evidence that eiders breeding in the Arctic can alter their diet at the onset of reproductive investment to overcome increases in the energetic demand of egg production. Ultimately, Arctic pre-breeding common eiders may have the stage- and year-related foraging flexibility to respond to abiotic variation to reproduce successfully.


Assuntos
Aves , Reprodução , Animais , Humanos , Regiões Árticas
4.
Mol Biol Evol ; 37(2): 540-548, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651942

RESUMO

The view of maternal effects (nongenetic maternal environmental influence on offspring phenotype) has changed from one of distracting complications in evolutionary genetics to an important evolutionary mechanism for improving offspring fitness. Recent studies have shown that maternal effects act as an adaptive mechanism to prepare offspring for stressful environments. Although research into the magnitude of maternal effects is abundant, the molecular mechanisms of maternal influences on offspring phenotypic variation are not fully understood. Despite recent work identifying DNA methylation as a potential mechanism of nongenetic inheritance, currently proposed links between DNA methylation and parental effects are indirect and primarily involve genomic imprinting. We combined a factorial breeding design and gene-targeted sequencing methods to assess inheritance of methylation during early life stages at 14 genes involved in growth, development, metabolism, stress response, and immune function of Chinook salmon (Oncorhynchus tshawytscha). We found little evidence for additive or nonadditive genetic effects acting on methylation levels during early development; however, we detected significant maternal effects. Consistent with conventional maternal effect data, maternal effects on methylation declined through development and were replaced with nonadditive effects when offspring began exogenous feeding. We mapped methylation at individual CpG sites across the selected candidate genes to test for variation in site-specific methylation profiles and found significant maternal effects at selected CpG sites that also declined with development stage. While intergenerational inheritance of methylated DNA is controversial, we show that CpG-specific methylation may function as an underlying molecular mechanism for maternal effects, with important implications for offspring fitness.


Assuntos
Metilação de DNA , Herança Materna , Salmão/crescimento & desenvolvimento , Animais , Ilhas de CpG , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Fenótipo , Salmão/genética
5.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232314

RESUMO

The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Assuntos
Termotolerância , Animais , Aves , Regulação da Temperatura Corporal , Temperatura Alta , Perda Insensível de Água
6.
Oecologia ; 197(3): 661-674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34657196

RESUMO

Droughts can affect invertebrate communities in wetlands, which can have bottom-up effects on the condition and survival of top predators. Shorebirds, key predators at coastal wetlands, have experienced widespread population declines and could be negatively affected by droughts. We explored, in detail, the effects of drought on multiple aspects of shorebird stopover and migration ecology by contrasting a year with average wet/dry conditions (2016) with a year with moderate drought (2017) at a major subarctic stopover site on southbound migration. We also examined the effects of drought on shorebird body mass during stopover across 14 years (historical: 1974-1982 and present-day: 2014-2018). For the detailed comparison of two years, in the year with moderate drought we documented lower invertebrate abundance at some sites, higher prey family richness in shorebird faecal samples, lower shorebird refuelling rates, shorter stopover durations for juveniles, and, for most species, a higher probability of making a subsequent stopover in North America after departing the subarctic, compared to the year with average wet/dry conditions. In the 14-year dataset, shorebird body mass tended to be lower in drier years. We show that even short-term, moderate drought conditions can negatively affect shorebird refuelling performance at coastal wetlands, which may carry-over to affect subsequent stopover decisions. Given shorebird population declines and predicted changes in the severity and duration of droughts with climate change, researchers should prioritize a better understanding of how droughts affect shorebird refuelling performance and survival.


Assuntos
Migração Animal , Áreas Alagadas , Animais , Secas , Ecologia , Invertebrados
7.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R274-R283, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31823671

RESUMO

Phenotypic flexibility has received considerable attention in the last decade; however, whereas many studies have reported amplitude of variation in phenotypic traits, much less attention has focused on the rate at which traits can adjust in response to sudden changes in the environment. We investigated whole animal and muscle phenotypic changes occurring in black-capped chickadees (Poecile atricapillus) acclimated to cold (-5°C) and warm (20°C) temperatures in the first 3 h following a 15°C temperature drop (over 3 h). Before the temperature change, cold-acclimated birds were consuming 95% more food, were carrying twice as much body fat, and had 23% larger pectoralis muscle fiber diameters than individuals kept at 20°C. In the 3 h following the temperature drop, these same birds altered their pectoralis muscle ultrastructure by increasing the number of capillaries per fiber area and the number of nuclei per millimeter of fiber by 22%, consequently leading to a 22% decrease in myonuclear domain (amount of cytoplasm serviced per nucleus), whereas no such changes were observed in the warm-acclimated birds. To our knowledge, this is the first demonstration of such a rapid adjustment in muscle fiber ultrastructure in vertebrates. These results support the hypothesis that chickadees maintaining a cold phenotype are better prepared than warm-phenotype individuals to respond to a sudden decline in temperature, such as what may be experienced in their natural wintering environment.


Assuntos
Aclimatação , Capilares/ultraestrutura , Temperatura Baixa , Resposta ao Choque Frio , Fibras Musculares Esqueléticas/ultraestrutura , Passeriformes/fisiologia , Músculos Peitorais/irrigação sanguínea , Animais , Fenótipo , Estações do Ano , Fatores de Tempo
8.
Gen Comp Endocrinol ; 270: 123-130, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392885

RESUMO

The production of high quality secondary sexual traits can be constrained by trade-offs in the allocation of energy and nutrients with other metabolic activities, and is mediated by physiological processes. In birds, the factors influencing male plumage quality have been well studied; however, factors affecting female plumage quality are poorly understood. Furthermore, it remains uncertain which physiological traits mediate the relationship between body condition and ornaments. In this three-year study of after-second-year female tree swallows (Tachycineta bicolor), we investigated (1) the relationship between baseline corticosterone near the end of the brood-rearing period (CORTBR) and feather colour characteristics (hue, saturation, brightness) the following year, and (2) the relationship between baseline corticosterone measured during incubation (CORTI) and brood rearing (CORTBR), and feather colour in the same year. To control for reproductive effort, we included reproductive parameters as covariates in all analyses. In this first study between CORT and the plumage colour characteristics of a species bearing iridescent feathers, we did not find any relationship between CORTBR and the colour of subsequently-produced feathers, nor did we find any relationship between CORT and the colour of feathers displayed during that breeding season. If CORT levels at the end of breeding carry over to influence the immediately subsequent moult period as we expect, our results generally indicate that structural plumage quality may not be as sensitive to circulating CORT levels compared to carotenoid-based colouration. Future studies, particularly those employing experimental manipulations of CORT during moult in species with iridescent traits, are necessary to fully determine the role glucocorticoids play in mediating the quality of secondary sexual characteristics.


Assuntos
Corticosterona/metabolismo , Plumas/metabolismo , Animais , Feminino , Masculino , Andorinhas
9.
Oecologia ; 183(3): 653-666, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28058504

RESUMO

For migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius). We captured females from two populations 2-20 days before egg-laying to assess plasma concentration of ß-hydroxybutyric acid (BUTY) and triglyceride (TRIG), two metabolites known to reflect short-term changes in fasting and fattening rate, respectively. We also assessed baseline corticosterone (CORTb), a hormone that mediates energy allocation, and the scaled mass index (SMI) as an indicator of somatic body reserves. Plasma BUTY was slightly higher during the pre-recruiting period compared to the period of rapid follicular growth, indicating a reduction in catabolism of lipid reserves before investment in follicle development. Conversely, TRIG levels increased in pre-recruiting females, and best-predicted individual variation in pre-laying interval and lay date. A marked increase in CORTb occurred concomitantly with the onset of rapid follicle growth. SMI was highly variable possibly reflecting variation in food availability or individuals at different stages. Results suggest that (1) lower rates of pre-laying fattening and/or lower mobilization rate of lipoproteins to ovarian follicles delayed laying, and (2) an elevation in pre-laying CORTb may result from, or be required to compensate for, the energetic costs of egg production. Results of this study illustrate how variation in the allocation of energy before laying can influence individual fitness-related reproductive decisions.


Assuntos
Cruzamento , Aves Predatórias , Animais , Regiões Árticas , Corticosterona , Reprodução
10.
Oecologia ; 183(4): 987-996, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214946

RESUMO

Feather corticosterone (CORT) levels are increasingly employed as biomarkers of environmental stress. However, it is unclear if feather CORT levels reflect stress and/or workload in the wild. We investigated whether feather CORT represents a biomarker of environmental stress and reproductive effort in tree swallows (Tachycineta bicolor). Specifically, we examined whether individual state and investment during reproduction could predict feather CORT levels in subsequently moulted feathers and whether those levels could predict future survival and reproductive success. Through a manipulation of flight cost during breeding, we also investigated whether an increase in stress level would be reflected in subsequently grown feathers, and whether those levels could predict future success. We found that CORT levels of feathers grown during moult did not (1) reflect past breeding experience (n = 29), (2) predict reproductive output (n = 18), or (3) respond to a manipulation of flight effort during reproduction (10 experimental, 14 control females). While higher feather CORT levels predicted higher return rate (a proxy for survival), they did so only in the manipulated group (n = 36), and this relationship was opposite to expected. Overall, our results add to the mixed literature reporting that feather CORT levels can be positively, negatively, or not related to proxies of within-season and longer-term fitness (i.e., carryover effects). In addition, our results indicate that CORT levels or disturbances experienced during one time (e.g., breeding) may not carry over to subsequent stages (e.g., moult). We, therefore, petition for directed research investigating whether feather CORT represents exposure to chronic stress in feathers grown during moult.


Assuntos
Corticosterona , Plumas , Animais , Biomarcadores , Cruzamento , Muda , Reprodução
11.
Oecologia ; 183(2): 353-365, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27873067

RESUMO

Many ecosystems have experienced anthropogenically induced changes in biodiversity, yet predicting these patterns has been difficult. Recently, individual behavioural and physiological measures have been proposed as more rapid links between environmental variation and fitness compared to demographics. Glucocorticoid hormones have received much attention given that they mediate energetic demands, metabolism, and foraging behaviour. However, it is currently unclear whether glucocorticoids can reliably predict environmental and fitness-related traits and whether they may be useful in specific groups of taxa. In particular, seabirds are a well-studied avian group often employed as biomonitoring tools for environmental change given their wide distribution and reliance on large oceanic patterns. Despite the increase in studies attempting to link variation in baseline corticosterone (the primary avian glucocorticoid) to variation in fitness-related traits in seabirds, there has been no comprehensive review of the relationship in this taxon. We present a phylogenetically controlled systematic review and meta-analysis of correlative and experimental studies examining baseline corticosterone as a predictor of fitness-related traits relevant to predicting seabird population health. Our results suggest that, while variation in baseline corticosterone may be a useful predictor of larger-scale environmental traits such as overall food availability and fitness-related traits such as reproductive success, this hormone may not be sensitive enough to detect variation in body condition, foraging effort, and breeding effort. Overall, our results support recent work suggesting that the use of baseline glucocorticoids as conservation biomarkers is complex and highly context dependent, and we suggest caution in their use and interpretation as simplified, direct biomarkers of fitness.


Assuntos
Corticosterona/metabolismo , Glucocorticoides/metabolismo , Animais , Aves/metabolismo , Cruzamento , Reprodução
12.
Am Nat ; 188(4): 434-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27622877

RESUMO

The influence of variation in individual state on key reproductive decisions impacting fitness is well appreciated in evolutionary ecology. Rowe et al. (1994) developed a condition-dependent individual optimization model predicting that three key factors impact the ability of migratory female birds to individually optimize breeding phenology to maximize fitness in seasonal environments: arrival condition, arrival date, and ability to gain in condition on the breeding grounds. While empirical studies have confirmed that greater arrival body mass and earlier arrival dates result in earlier laying, no study has assessed whether individual variation in energetic management of condition gain effects this key fitness-related decision. Using an 8-year data set from over 350 prebreeding female Arctic common eiders (Somateria mollissima), we tested this component of the model by examining whether individual variation in two physiological traits influencing energetic management (plasma triglycerides: physiological fattening rate; baseline corticosterone: energetic demand) predicted individual variation in breeding phenology after controlling for arrival date and body mass. As predicted by the optimization model, individuals with higher fattening rates and lower energetic demand had the earliest breeding phenology (shortest delays between arrival and laying; earliest laying dates). Our results are the first to empirically determine that individual flexibility in prebreeding energetic management influences key fitness-related reproductive decisions, suggesting that individuals have the capacity to optimally manage reproductive investment.


Assuntos
Anseriformes , Aptidão Genética , Reprodução , Animais , Regiões Árticas , Corticosterona , Feminino
13.
Ecol Appl ; 26(8): 2730-2743, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27763712

RESUMO

The application of physiological measures to conservation monitoring has been gaining momentum and, while a suite of physiological traits are available to ascertain disturbance and condition in wildlife populations, glucocorticoids (i.e., GCs; cortisol and corticosterone) are the most heavily employed. The interpretation of GC levels as sensitive indicators of population change necessitates that GCs and metrics of population persistence are linked. However, the relationship between GCs and fitness may be highly context-dependent, changing direction, or significance, depending on the GC measure, fitness metric, life history stage, or other intrinsic and extrinsic contexts considered. We examined the relationship between baseline plasma corticosterone (CORT) levels measured at two periods of the breeding season and three metrics of fitness (offspring quality, reproductive output, and adult survival) in female Tree Swallows (Tachycineta bicolor). Specifically, we investigated whether (1) a relationship between baseline CORT metrics and fitness exists in our population, (2) whether the inclusion of energetic contexts, such as food availability, reproductive investment, or body mass, could alter or improve the strength of the relationship between CORT and fitness, and (3) whether energetic contexts could better predict fitness compared to CORT metrics. Importantly, we investigated these relationships in both natural conditions and under an experimental manipulation of foraging profitability (feather clipping) to determine the influence of an environmental constraint on GC-fitness relationships. We found a lack of relationship between baseline CORT and both short- and long-term metrics of fitness in control and clipped birds. In contrast, loss in body mass over reproduction positively predicted reproductive output (number of chicks leaving the nest) in control birds; however, the relationship was characterized by a low R2 (5%), limiting the predictive capacity, and therefore the application potential, of such a measure in a conservation setting. Our results stress the importance of ground-truthing GC-fitness relationships and indicate that baseline GCs will likely not be easily employed as conservation biomarkers across some species and life history stages. Given the accumulating evidence of temporally dynamic, inconsistent, and context-dependent GC-fitness relationships, placing effort towards directly measuring fitness traits, rather than plasma GC levels, will likely be more worthwhile for many conservation endeavours.


Assuntos
Aptidão Genética , Glucocorticoides , Andorinhas , Animais , Animais Selvagens , Corticosterona , Feminino , Reprodução
14.
Proc Biol Sci ; 282(1800): 20142085, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25540279

RESUMO

For birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to provide information on total baseline and stress-induced CORT levels at moulting and is an integrated measure of hypothalamic-pituitary-adrenal activity during the time feathers are grown. We predicted that CORTf levels in northern common eider females would relate to subsequent body condition, reproductive success and survival, in a population of eiders nesting in the eastern Canadian Arctic during a capricious period marked by annual avian cholera outbreaks. We collected CORTf data from feathers grown during previous moult in autumn and data on phenology of subsequent reproduction and survival for 242 eider females over 5 years. Using path analyses, we detected a direct relationship between CORTf and arrival date and body condition the following year. CORTf also had negative indirect relationships with both eider reproductive success and survival of eiders during an avian cholera outbreak. This indirect effect was dramatic with a reduction of approximately 30% in subsequent survival of eiders during an avian cholera outbreak when mean CORTf increased by 1 standard deviation. This study highlights the importance of events or processes occurring during moult on subsequent expression of life-history traits and relation to individual fitness, and shows that information from non-destructive sampling of individuals can track carry-over effects across seasons.


Assuntos
Anseriformes/fisiologia , Corticosterona/análise , Plumas/química , Muda/fisiologia , Reprodução/fisiologia , Animais , Anseriformes/microbiologia , Regiões Árticas , Doenças das Aves/microbiologia , Doenças das Aves/mortalidade , Doenças das Aves/fisiopatologia , Canadá , Feminino , Infecções por Pasteurella/mortalidade , Infecções por Pasteurella/fisiopatologia , Infecções por Pasteurella/veterinária , Pasteurella multocida , Estações do Ano , Estresse Fisiológico
15.
Oecologia ; 177(1): 235-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25411112

RESUMO

Integrative biologists have long appreciated that the effective acquisition and management of energy prior to breeding should strongly influence fitness-related reproductive decisions (timing of breeding and reproductive investment). However, because of the difficulty in capturing pre-breeding individuals, and the tendency towards abandonment of reproduction after capture, we know little about the underlying mechanisms of these life-history decisions. Over 10 years, we captured free-living, arctic-breeding common eiders (Somateria mollissima) up to 3 weeks before investment in reproduction. We examined and characterized physiological parameters predicted to influence energetic management by sampling baseline plasma glucocorticoids (i.e., corticosterone), very-low-density lipoprotein (VLDL), and vitellogenin (VTG) for their respective roles in mediating energetic balance, rate of condition gain (physiological fattening rate) and reproductive investment. Baseline corticosterone increased significantly from arrival to the initiation of reproductive investment (period of rapid follicular growth; RFG), and showed a positive relationship with body mass, indicating that this hormone may stimulate foraging behaviour to facilitate both fat deposition and investment in egg production. In support of this, we found that VLDL increased throughout the pre-breeding period, peaking as predicted during RFG. Female eiders exhibited unprecedentedly high levels of VTG well before their theoretical RFG period, a potential strategy for pre-emptively depositing available protein stores into follicles while females are simultaneously fattening. This study provides some of the first data examining the temporal dynamics and interaction of the energetic mechanisms thought to be at the heart of individual variation in reproductive decisions and success in many vertebrate species.


Assuntos
Tecido Adiposo/metabolismo , Anseriformes/metabolismo , Cruzamento , Metabolismo Energético , Óvulo , Reprodução/fisiologia , Animais , Regiões Árticas , Comportamento Animal , VLDL-Colesterol/sangue , Corticosterona/sangue , Feminino , Glucocorticoides/sangue , Estágios do Ciclo de Vida , Vitelogeninas/sangue
16.
Gen Comp Endocrinol ; 216: 39-45, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25913259

RESUMO

Diel variation in baseline glucocorticoid (GC) secretion influences energetics and foraging behaviors. In temperate breeding, diurnal vertebrates, studies have shown that daily patterns of baseline GC secretion are influenced by environmental photoperiod, with baseline GCs peaking prior to sunrise to stimulate waking and foraging behaviors. Measures of physiological energy acquisition are also expected to peak in response to foraging activity, but their relationship to GC levels have not been well studied. In contrast to temperate breeding species, virtually nothing is known about diel GC and energetic metabolite secretion in Arctic breeding species, which experience almost constant photoperiods in spring and summer. Using a ten-year dataset, we examined the daily, 24-h pattern of baseline corticosterone (CORT) and triglyceride (TRIG) secretion in approximately 800 female pre-breeding Arctic-nesting common eiders (Somateria mollissima). We related these traits to environmental photoperiod and to tidal cycle. In contrast to temperate breeding species, we found that that neither time of day nor tidal trend predicted diel variation in CORT or TRIG secretion in Arctic-breeding eiders. Given the narrow window of opportunity for breeding in polar regions, we suggest that eiders must decouple their daily foraging activity from light and tidal cycles if they are to accrue sufficient energy for successful breeding. As CORT is known to influence foraging behavior, the absence of a distinct diel pattern of CORT secretion may therefore be an adaptation to optimize reproductive investment and likelihood for success in some polar-breeding species.


Assuntos
Anseriformes/fisiologia , Cruzamento , Ritmo Circadiano , Corticosterona/metabolismo , Mergulho/fisiologia , Metabolismo Energético , Triglicerídeos/metabolismo , Animais , Regiões Árticas , Meio Ambiente , Comportamento Alimentar , Reprodução/fisiologia , Estações do Ano
17.
Genetica ; 142(4): 281-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24952720

RESUMO

Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.


Assuntos
Hibridização Genética , Salmão/genética , Animais , Vigor Híbrido , Endogamia
18.
Gen Comp Endocrinol ; 199: 65-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24462764

RESUMO

Determining the mechanisms that mediate investment decisions between current and future reproductive attempts is still a key goal of life-history studies. Since baseline levels of stress hormones (glucocorticoids - GCs) act as predictive and labile regulators of daily energetic balance in vertebrates they remain excellent candidates for mediating investment decisions both within and across reproductive attempts. Using free-living female European starlings (Sturnus vulgaris) we experimentally reduced investment in current reproduction (number of offspring raised in the first brood) to examine whether baseline corticosterone (CORT) acted as a hormonal mediator preparing individuals for a predictable increase in future investment (number of offspring raised in the second brood). Although treatment and control birds raised the same total amount of offspring across two broods, the experimental birds increased reproductive investment in second broods to compensate for the reduced investment in the first brood. Data on both mean and intra-individual changes in baseline CORT support the idea that an increase in baseline CORT between the incubation stages in treatment birds strongly predicted this increase in investment. Importantly, we measured the increase in baseline CORT during late incubation prior to the increase in energetic demand associated with increased reproductive investment in offspring, indicating that flexible within-individual changes in baseline GCs can act as a labile mechanism preparing individuals for predictable increases in reproductive investment. As such, our experimental results indicate that elevated baseline GCs can prepare individuals for investment in energetically expensive life-history stages, rather than simply being elevated as a consequence of increased effort or demand. This suggests that short-term preparative increases in baseline GCs benefit individuals by successfully allowing them to maximize fitness under varying environmental conditions.


Assuntos
Animais Selvagens/sangue , Animais Selvagens/fisiologia , Glucocorticoides/sangue , Reprodução/fisiologia , Estorninhos/sangue , Estorninhos/fisiologia , Animais , Colúmbia Britânica , Tamanho da Ninhada , Corticosterona/sangue , Feminino , Estágios do Ciclo de Vida , Masculino , Estações do Ano
19.
Sci Rep ; 14(1): 15193, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956145

RESUMO

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Assuntos
Temperatura Baixa , Aves Canoras , Animais , Regiões Árticas , Aves Canoras/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Cruzamento , Reprodução/fisiologia , Feminino , Masculino , Temperatura
20.
Ecol Evol ; 14(3): e11012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469043

RESUMO

Interspecific foraging associations (IFAs) are biological interactions where two or more species forage in association with each other. Climate-induced reductions in Arctic sea ice have increased polar bear (Ursus maritimus) foraging in seabird colonies, which creates foraging opportunities for avian predators. We used drone video of bears foraging within a common eider (Somateria mollissima) colony on East Bay Island (Nunavut, Canada) in 2017 to investigate herring gull (Larus argentatus) foraging in association with bears. We recorded nest visitation by gulls following n = 193 eider flushing events from nests during incubation. The probability of gulls visiting eider nests increased with higher number of gulls present (ß = 0.14 ± 0.03 [SE], p < .001) and for nests previously visited by a bear (ß = 1.14 ± 0.49 [SE], p < .02). In our model examining the probability of gulls consuming eggs from nests, we failed to detect statistically significant effects for the number of gulls present (ß = 0.09 ± 0.05 [SE], p < .07) or for nests previously visited by a bear (ß = -0.92 ± 0.71 [SE], p < .19). Gulls preferred to visit nests behind bears (χ2 = 18, df = 1, p < .0001), indicating gulls are risk averse in the presence of polar bears. Our study provides novel insights on an Arctic IFA, and we present evidence that gulls capitalize on nests made available due to disturbance associated with foraging bears, as eiders disturbed off their nest allow gulls easier access to eggs. We suggest the IFA between gulls and polar bears is parasitic, as gulls are consuming terrestrial resources which would have eventually been consumed by bears. This finding has implications for estimating the energetic contribution of bird eggs to polar bear summer diets in that the total number of available clutches to consume may be reduced due to avian predators.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa