Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Nat Rev Neurosci ; 23(4): 191-203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228740

RESUMO

Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.


Assuntos
Comunicação Celular , Receptores Pré-Sinápticos , Potenciais de Ação , Humanos , Neurônios , Transmissão Sináptica
2.
J Physiol ; 601(1): 195-209, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412169

RESUMO

Presynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABAB and CB1 receptors modulate iSPN-GPe projections. Here we used an optogenetic platform to study presynaptic Ca2+ and GABAergic transmission at iSPN projections, using a genetic strategy to express the calcium sensor GCaMP6f or the excitatory channelrhodopsin (hChR2) on iSPNs. We found that P/Q-type calcium channels are the primary voltage-gated Ca2+ channel (VGCC) subtype controlling presynaptic calcium and GABA release at iSPN-GPe projections. N-type and L-type VGCCs also contribute to GABA release at iSPN-GPe synapses. GABAB receptor activation resulted in a reversible inhibition of presynaptic Ca2+ transients (PreCaTs) and an inhibition of GABAergic transmission at iSPN-GPe synapses. CB1 receptor activation did not inhibit PreCaTs but inhibited GABAergic transmission at iSPN-GPe projections. CB1 effects on GABAergic transmission persisted in experiments where NaV and KV 1 were blocked, indicating a VGCC- and KV 1-independent presynaptic mechanism of action of CB1 receptors. Taken together, presynaptic modulation of iSPN-GPe projections by CB1 and GABAB receptors is mediated by distinct mechanisms. KEY POINTS: P/Q-type are the predominant voltage-gated Ca2+ channels controlling presynaptic Ca2+ and GABA release on the striatal indirect pathway projections. GABAB receptors modulate iSPN-GPe projections via a VGCC-dependent mechanism. CB1 receptors modulate iSPN-GPe projections via a VGCC-independent mechanism.


Assuntos
Globo Pálido , Ácido gama-Aminobutírico , Camundongos , Animais , Globo Pálido/metabolismo , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-B/metabolismo , Cálcio/metabolismo , Corpo Estriado/metabolismo
3.
Neurobiol Dis ; 167: 105670, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219856

RESUMO

The legalization of cannabis in many countries, as well as the decrease in perceived risks of cannabis, have contributed to the increase in cannabis use medicinally and recreationally. Like many drugs of abuse, cannabis and cannabis-derived drugs are prone to misuse, and long-term usage can lead to drug tolerance and the development of Cannabis Use Disorder (CUD). These drugs signal through cannabinoid receptors, which are expressed in brain regions involved in the neural processing of reward, habit formation, and cognition. Despite the widespread use of cannabis and cannabinoids as therapeutic agents, little is known about the neurobiological mechanisms associated with CUD and cannabinoid drug use. In this article, we discuss the advances in research spanning animal models to humans on cannabis and synthetic cannabinoid actions on synaptic transmission, highlighting the neurobiological mechanisms following acute and chronic drug exposure. This article also highlights the need for more research elucidating the neurobiological mechanisms associated with CUD and cannabinoid drug use.


Assuntos
Canabinoides , Cannabis , Abuso de Maconha , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Dronabinol , Abuso de Maconha/tratamento farmacológico , Receptores de Canabinoides
4.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232321

RESUMO

Alcohol use disorder (AUD) is characterized by escalating alcohol consumption, preoccupation with alcohol, and continued alcohol consumption despite adverse consequences. Dopamine has been implicated in neural and behavioral processes involved in reward and reinforcement and is a critical neurotransmitter in AUD. Clinical and preclinical research has shown that long-term ethanol exposure can alter dopamine release, though most of this work has focused on nucleus accumbens (NAc). Like the NAc, the dorsal striatum (DS) is implicated in neural and behavioral processes in AUD. However, little work has examined chronic ethanol effects on DS dopamine dynamics. Therefore, we examined the effect of ethanol consumption and withdrawal on dopamine release and its presynaptic regulation with fast-scan cyclic voltammetry in C57BL/6J mice. We found that one month of ethanol consumption did not alter maximal dopamine release or dopamine tissue content. However, we did find that D2 dopamine autoreceptors were sensitized. We also found a decrease in cholinergic control of dopamine release via ß2-containing nAChRs on dopamine axons. Interestingly, both effects were reversed following withdrawal, raising the possibility that some of the neuroadaptations in AUD might be reversible in abstinence. Altogether, this work elucidates some of the chronic alcohol-induced neurobiological dysfunctions in the dopamine system.


Assuntos
Autorreceptores , Dopamina , Consumo de Bebidas Alcoólicas , Animais , Colinérgicos/farmacologia , Dopamina/farmacologia , Etanol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens
5.
J Neurochem ; 157(5): 1674-1696, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891706

RESUMO

Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.


Assuntos
Endocanabinoides , Abuso de Maconha/fisiopatologia , Fumar Maconha/fisiopatologia , Receptores de Canabinoides , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Dronabinol/farmacologia , Tolerância a Medicamentos , Humanos , Abuso de Maconha/psicologia , Fumar Maconha/psicologia , Síndrome de Abstinência a Substâncias/psicologia
6.
Eur J Neurosci ; 54(3): 4934-4952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216157

RESUMO

Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.


Assuntos
Anfetamina , Canabinoides , Corpo Estriado , Receptor CB1 de Canabinoide , Anfetamina/farmacologia , Animais , Camundongos , Camundongos Knockout , Neurônios , Receptor CB1 de Canabinoide/genética
7.
Br J Anaesth ; 127(2): 296-309, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33934892

RESUMO

BACKGROUND: Little is known about the targets in the CNS that mediate ethanol analgesia. This study explores the role of spinal astrocyte aldehyde dehydrogenase-2 (ALDH2), a key ethanol-metabolising enzyme, in the analgesic effects of ethanol in mice. METHODS: Astrocyte and hepatocyte ALHD2-deficient mice were generated and tested in acute and chronic pain models. Cell-type-specific distribution of ALDH2 was analysed by RNA in situ hybridisation in spinal slices from astrocytic ALDH2-deficient mice and their wild-type littermates. Spinal ethanol metabolites and γ-aminobutyric acid (GABA) content were measured using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. RESULTS: ALDH2 mRNA was expressed in both astrocytes and neurones in spinal cord slices. Astrocyte ALDH2-deficient mice had decreased expression of ALDH2 mRNA in astrocytes, but not in neurones. Astrocyte ALDH2 deficiency inhibited ethanol-derived acetate, but not acetaldehyde content in spinal cord tissues. Depletion of spinal astrocyte ALDH2 selectively inhibited ethanol-induced anti-nociceptive effect, but not the effect of ethanol, on motor function. Astrocyte ALDH2 deficiency abolished ethanol-induced GABA elevation. The ethanol metabolite acetate produced anti-nociception and increased GABA synthesis in a manner similar to ethanol. I.T. delivery of either GABAA or GABAB receptor antagonists prevented ethanol and acetate-induced analgesia. CONCLUSIONS: These findings provide evidence that ALDH2 in spinal astrocytes mediates spinal ethanol metabolism and ethanol-induced analgesic effects by promoting GABA synthesis and GABAergic transmission in spinal cord.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Analgesia/métodos , Etanol/administração & dosagem , Etanol/metabolismo , Dor/tratamento farmacológico , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Medula Espinal/metabolismo
8.
J Neurosci ; 39(8): 1457-1470, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30559150

RESUMO

Dynamic regulation of synaptic transmission at cortical inputs to the dorsal striatum is considered critical for flexible and efficient action learning and control. Presynaptic mechanisms governing the properties and plasticity of glutamate release from these inputs are not fully understood, and the corticostriatal synaptic processes that support normal action learning and control remain unclear. Here we show in male and female mice that conditional deletion of presynaptic proteins RIM1αß (RIM1) from excitatory cortical neurons impairs corticostriatal synaptic transmission in the dorsolateral striatum. Key forms of presynaptic G-protein-coupled receptor-mediated short- and long-term striatal plasticity are spared following RIM1 deletion. Conditional RIM1 KO mice show heightened novelty-induced locomotion and impaired motor learning on the accelerating rotarod. They further show heightened self-paced instrumental responding for food and impaired learning of a habitual instrumental response strategy. Together, these findings reveal a selective role for presynaptic RIM1 in neurotransmitter release at prominent basal ganglia synapses, and provide evidence that RIM1-dependent processes help to promote the refinement of skilled actions, constrain goal-directed behaviors, and support the learning and use of habits.SIGNIFICANCE STATEMENT Our daily functioning hinges on the ability to flexibly and efficiently learn and control our actions. How the brain encodes these capacities is unclear. Here we identified a selective role for presynaptic proteins RIM1αß in controlling glutamate release from cortical inputs to the dorsolateral striatum, a brain structure critical for action learning and control. Behavioral analysis of mice with restricted genetic deletion of RIM1αß further revealed roles for RIM1αß-dependent processes in the learning and refinement of motor skills and the balanced expression of goal-directed and habitual actions.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Gânglios da Base/fisiologia , Condicionamento Operante/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Ácido Glutâmico/fisiologia , Hábitos , Aprendizagem/fisiologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Destreza Motora/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/fisiologia
9.
Nat Rev Neurosci ; 16(5): 264-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25891509

RESUMO

Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Endocanabinoides/biossíntese , Epilepsia/fisiopatologia , Rede Nervosa/fisiopatologia , Animais , Epilepsia/diagnóstico , Humanos , Receptor CB1 de Canabinoide/biossíntese , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
10.
Addict Biol ; 25(2): e12726, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30884072

RESUMO

Here, we used knock-in (KI) mice that have ethanol-insensitive alpha 1 glycine receptors (GlyRs) (KK385/386AA) to examine how alpha 1 GlyRs might affect binge drinking and conditioned place preference. Data show that tonic alpha 1 GlyR-mediated currents were exclusively sensitive to ethanol only in wild-type mice. Behavioral studies showed that the KI mice have a higher intake of ethanol upon first exposure to drinking and greater conditioned place preference to ethanol. This study suggests that nonsynaptic alpha 1-containing GlyRs have a role in motivational and early reinforcing effects of ethanol.


Alcohol abuse leads to great medical, social, and economic burdens throughout the world. It is believed that the rewarding actions of alcohol are mediated by alterations in the mesolimbic dopaminergic system leading to increased levels of dopamine in the nucleus accumbens (NAc). Little is known about the role that ligand-gated ion channels (LGICs), such as glycine receptors (GlyRs), have in regulating levels of ethanol intake and place preference. In this study, we used knock-in (KI) mice that have ethanol-insensitive α1 GlyRs (KK385/386AA) and a combination of electrophysiological and behavioral approaches to examine how expression of ethanol-resistant α1 GlyRs in brain neurons might affect binge drinking and conditioned place preference. Data show that tonic α1 GlyR-mediated currents that modulate accumbal excitability were exclusively sensitive to ethanol only in wild-type (WT) mice. Behavioral studies showed that the KI mice have a higher intake of ethanol upon first exposure to drinking and greater conditioned place preference to ethanol, suggesting that α1 GlyRs in the brain have a protective role against abuse. This study suggests that nonsynaptic α1-containing GlyRs have a role in motivational and early reinforcing effects of ethanol and open a novel opportunity for pharmacotherapy development to treat alcohol use disorders.


Assuntos
Alcoolismo/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Etanol/farmacologia , Receptores de Glicina/metabolismo , Alcoolismo/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Etanol/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glicina/efeitos dos fármacos
11.
Eur J Neurosci ; 49(6): 768-783, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29602186

RESUMO

The striatum, the input structure of the basal ganglia, is a major site of learning and memory for goal-directed actions and habit formation. Spiny projection neurons of the striatum integrate cortical, thalamic, and nigral inputs to learn associations, with cortico-striatal synaptic plasticity as a learning mechanism. Signaling molecules implicated in synaptic plasticity are altered in alcohol withdrawal, which may contribute to overly strong learning and increased alcohol seeking and consumption. To understand how interactions among signaling molecules produce synaptic plasticity, we implemented a mechanistic model of signaling pathways activated by dopamine D1 receptors, acetylcholine receptors, and glutamate. We use our novel, computationally efficient simulator, NeuroRD, to simulate stochastic interactions both within and between dendritic spines. Dopamine release during theta burst and 20-Hz stimulation was extrapolated from fast-scan cyclic voltammetry data collected in mouse striatal slices. Our results show that the combined activity of several key plasticity molecules correctly predicts the occurrence of either LTP, LTD, or no plasticity for numerous experimental protocols. To investigate spatial interactions, we stimulate two spines, either adjacent or separated on a 20-µm dendritic segment. Our results show that molecules underlying LTP exhibit spatial specificity, whereas 2-arachidonoylglycerol exhibits a spatially diffuse elevation. We also implement changes in NMDA receptors, adenylyl cyclase, and G protein signaling that have been measured following chronic alcohol treatment. Simulations under these conditions suggest that the molecular changes can predict changes in synaptic plasticity, thereby accounting for some aspects of alcohol use disorder.


Assuntos
Alcoolismo/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Alcoolismo/fisiopatologia , Animais , Gânglios da Base/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Aprendizagem/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Eur J Neurosci ; 50(3): 2023-2035, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30218623

RESUMO

There is a compelling evidence that midbrain dopamine (DA) neurons and their projections to the ventral striatum provide a mechanism for motivating reward-seeking behavior, and for utilizing information about unexpected reward prediction errors (RPEs) to guide behavior based on current, rather than historical, outcomes. When this mechanism is compromised in addictions, it may produce patterns of maladaptive behavior that remain obdurate in the face of contrary information and even adverse consequences. Nonetheless, DAergic contributions to performance on behavioral tasks that rely on the ability to flexibly update stimulus-reward relationships remains incompletly understood. In the current study, we used a discrimination and reversal paradigm to monitor subsecond DA release in mouse NAc core (NAc) using in vivo fast-scan cyclic voltammetry (FSCV). We observed post-choice elevations in phasic NAc DA release; however, increased DA transients were only evident during early reversal when mice made responses at the newly rewarded stimulus. Based on this finding, we used in vivo optogenetic (eNpHR) photosilencing and (Channelrhodopsin2 [ChR2]) photostimulation to assess the effects of manipulating VTA-DAergic fibers in the NAc on reversal performance. Photosilencing the VTA â†’ NAc DAergic pathway during early reversal increased errors, while photostimulation did not demonstrably affect behavior. Taken together, these data provide additional evidence of the importance of NAc DA release as a neural substrate supporting adjustments in learned behavior after a switch in expected stimulus-reward contingencies. These findings have possible implications for furthering understanding the role of DA in persistent, maladaptive decision-making characterizing addictions.


Assuntos
Cognição/fisiologia , Condicionamento Operante/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Motivação/fisiologia , Área Tegmentar Ventral/fisiologia
13.
Nature ; 494(7436): 238-42, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23354054

RESUMO

The basal ganglia are subcortical nuclei that control voluntary actions, and they are affected by a number of debilitating neurological disorders. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum--the so-called direct and indirect pathways--have opposing effects on movement: activity of direct-pathway SPNs is thought to facilitate movement, whereas activity of indirect-pathway SPNs is presumed to inhibit movement. This model has been difficult to test owing to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. Here we develop a novel in vivo method to specifically measure direct- and indirect-pathway SPN activity, using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCaMP3 in the dorsal striatum of D1-Cre (direct-pathway-specific) and A2A-Cre (indirect-pathway-specific) mice. Using fibre optics and time-correlated single-photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function and may have implications for understanding the origin of motor symptoms in basal ganglia disorders.


Assuntos
Movimento/fisiologia , Neostriado/citologia , Neostriado/fisiologia , Vias Neurais/fisiologia , Animais , Sinalização do Cálcio , Feminino , Tecnologia de Fibra Óptica/métodos , Fluorescência , Integrases/genética , Integrases/metabolismo , Medições Luminescentes/métodos , Masculino , Camundongos , Modelos Neurológicos , Doença de Parkinson , Fótons
14.
Learn Mem ; 25(9): 425-434, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30115764

RESUMO

Alcohol use disorders include drinking problems that span a range from binge drinking to alcohol abuse and dependence. Plastic changes in synaptic efficacy, such as long-term depression and long-term potentiation are widely recognized as mechanisms involved in learning and memory, responses to drugs of abuse, and addiction. In this review, we focus on the effects of chronic ethanol (EtOH) exposure on the induction of synaptic plasticity in different brain regions. We also review findings indicating that synaptic plasticity occurs in vivo during EtOH exposure, with a focus on ex vivo electrophysiological indices of plasticity. Evidence for effects of EtOH-induced or altered synaptic plasticity on learning and memory and EtOH-related behaviors is also reviewed. As this review indicates, there is much work needed to provide more information about the molecular, cellular, circuit, and behavioral consequences of EtOH interactions with synaptic plasticity mechanisms.


Assuntos
Alcoolismo/fisiopatologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Humanos
15.
J Physiol ; 596(17): 4219-4235, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29917235

RESUMO

KEY POINTS: Classifying different subtypes of neurons in deep brain structures is a challenge and is crucial to better understand brain function. Understanding the diversity of neurons in the globus pallidus (GP), a brain region positioned to influence afferent and efferent information processing within basal ganglia, could help to explain a variety of brain functions. We present a classification of neurons from the GP using electrophysiological data from wild-type mice and confirmation using transgenic mice. This work will help researchers to identify specific neuronal subsets in the GP of wild-type mice when transgenic mice with labelled neurons are lacking. ABSTRACT: Classification of the extensive neuronal diversity in the brain is fundamental for neuroscience. The globus pallidus external segment (GPe), also referred to as the globus pallidus in rodents, is a large nucleus located in the core of the basal ganglia whose circuitry is implicated in action control, decision-making and reward. Although considerable progress has been made in characterizing different GPe neuronal subtypes, no work has directly attempted to characterize these neurons in non-transgenic mice. Here, we provide data showing the degree of overlap in expression of neuronal PAS domain protein (Npas1), LIM homeobox 6 (Lhx6), parvalbumin (PV) and transcription factor FoxP2 biomarkers in mouse GPe neurons. We used an unbiased statistical method to classify neurons based on electrophysiological properties from nearly 200 neurons from C57BL/6J mice. In addition, we examined the subregion distribution of the neuronal subtypes. Cluster analysis using firing rate and hyperpolarization-induced membrane potential sag variables revealed three distinct neuronal clusters: type 1, characterized by low firing rate and small sag potential; type 2, with low firing rate and larger sag potential; and type 3, with high firing rate and small sag potential. We used other electrophysiological variables and data from marker-expressing neurons to evaluate the clusters. We propose that the GPe GABAergic neurons should be classified into three subgroups: arkypallidal, low-firing prototypical and high-firing prototypical neurons. This work will help researchers identify GPe neuron subtypes when transgenic mice with labelled neurons cannot be used.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Biomarcadores/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/metabolismo , Globo Pálido/metabolismo , Proteínas com Homeodomínio LIM/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo
16.
Handb Exp Pharmacol ; 248: 29-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29204712

RESUMO

Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20-25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but "allostatic" effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.


Assuntos
Etanol/farmacologia , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Tonsila do Cerebelo/fisiologia , Corpo Estriado/fisiologia , Hipocampo/fisiologia , Humanos , Transmissão Sináptica
17.
Handb Exp Pharmacol ; 248: 617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30810859

RESUMO

The Acknowledgements unfortunately went missing to be included in the chapter.

18.
J Physiol ; 595(16): 5637-5652, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28449351

RESUMO

KEY POINTS: Both endogenous opioids and opiate drugs of abuse modulate learning of habitual and goal-directed actions, and can also modify long-term plasticity of corticostriatal synapses. Striatal projection neurons of the direct pathway co-release the opioid neuropeptide dynorphin which can inhibit dopamine release via κ-opioid receptors. Theta-burst stimulation of corticostriatal fibres produces long-term potentiation (LTP) in striatal projection neurons when measured using whole-cell patch recording. Optogenetic activation of direct pathway striatal projection neurons inhibits LTP while reducing dopamine release. Because the endogenous release of opioids is activity dependent, this modulation of synaptic plasticity represents a negative feedback mechanism that may limit runaway enhancement of striatal neuron activity in response to drugs of abuse. ABSTRACT: Synaptic plasticity in the striatum adjusts behaviour adaptively during skill learning, or maladaptively in the case of addiction. Just as dopamine plays a critical role in synaptic plasticity underlying normal skill learning and addiction, endogenous and exogenous opiates also modulate learning and addiction-related striatal plasticity. Though the role of opioid receptors in long-term depression in striatum has been characterized, their effect on long-term potentiation (LTP) remains unknown. In particular, direct pathway (dopamine D1 receptor-containing; D1R-) spiny projection neurons (SPNs) co-release the opioid neuropeptide dynorphin, which acts at presynaptic κ-opioid receptors (KORs) on dopaminergic afferents and can negatively regulate dopamine release. Therefore, we evaluated the interaction of co-released dynorphin and KOR on striatal LTP. We optogenetically facilitate the release of endogenous dynorphin from D1R-SPNs in brain slice while using whole-cell patch recording to measure changes in the synaptic response of SPNs following theta-burst stimulation (TBS) of cortical afferents. Our results demonstrate that TBS evokes corticostriatal LTP, and that optogenetic activation of D1R-SPNs during induction impairs LTP. Additional experiments demonstrate that optogenetic activation of D1R-SPNs reduces stimulation-evoked dopamine release and that bath application of a KOR antagonist provides full rescue of both LTP induction and dopamine release during optogenetic activation of D1R-SPNs. These results suggest that an increase in the opioid neuropeptide dynorphin is responsible for reduced TBS LTP and illustrate a physiological phenomenon whereby heightened D1R-SPN activity can regulate corticostriatal plasticity. Our findings have important implications for learning in addictive states marked by elevated direct pathway activation.


Assuntos
Dinorfinas/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Opioides kappa/fisiologia , Animais , Corpo Estriado/fisiologia , Dopamina/fisiologia , Feminino , Aprendizagem , Luz , Potenciação de Longa Duração , Masculino , Camundongos Transgênicos , Neurônios/fisiologia , Receptores de Dopamina D1/fisiologia , Sinapses/fisiologia
19.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123485

RESUMO

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores Etários , Animais , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora , Degeneração Neural/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Neurosci ; 35(15): 5959-68, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878269

RESUMO

The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Núcleo Caudado/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Dopamina/metabolismo , Etanol/administração & dosagem , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Depressores do Sistema Nervoso Central/sangue , Eletroquímica , Etanol/sangue , Macaca fascicularis , Masculino , Autoadministração , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa