Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(37): 12798-12806, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070604

RESUMO

Detection of iron at the subcellular level in order to gain insights into its transport, storage, and therapeutic prospects to prevent cytotoxic effects of excessive iron accumulation is still a challenge. Nanoscale magnetic sector secondary ion mass spectrometry (SIMS) is an excellent candidate for subcellular mapping of elements in cells since it provides high secondary ion collection efficiency and transmission, coupled with high-lateral-resolution capabilities enabled by nanoscale primary ion beams. In this study, we developed correlative methodologies that implement SIMS high-resolution imaging technologies to study accumulation and determine subcellular localization of iron in alveolar macrophages. We employed transmission electron microscopy (TEM) and backscattered electron (BSE) microscopy to obtain structural information and high-resolution analytical tools, NanoSIMS and helium ion microscopy-SIMS (HIM-SIMS) to trace the chemical signature of iron. Chemical information from NanoSIMS was correlated with TEM data, while high-spatial-resolution ion maps from HIM-SIMS analysis were correlated with BSE structural information of the cell. NanoSIMS revealed that iron is accumulating within mitochondria, and both NanoSIMS and HIM-SIMS showed accumulation of iron in electrolucent compartments such as vacuoles, lysosomes, and lipid droplets. This study provides insights into iron metabolism at the subcellular level and has future potential in finding therapeutics to reduce the cytotoxic effects of excessive iron loading.


Assuntos
Ferro , Macrófagos Alveolares , Hélio , Pulmão , Espectrometria de Massa de Íon Secundário/métodos
2.
Chembiochem ; 18(19): 1898-1902, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28834067

RESUMO

Dimethyl sulfoxide (DMSO) is frequently used as a solvent in biological studies and as a vehicle for drug therapy; but the side effects of DMSO, especially on the cell environment, are not well understood, and controls with DMSO are not neutral at higher concentrations. Herein, electrochemical measurement techniques are applied to show that DMSO increases exocytotic neurotransmitter release, while leaving vesicular contents unchanged. In addition, the kinetics of release from DMSO-treated cells are faster than that of untreated ones. The results suggest that DMSO has a significant influence on the chemistry of the cell membrane, leading to alteration of exocytosis. A speculative chemical mechanism of the effect on the fusion pore during exocytosis is presented.


Assuntos
Membrana Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Exocitose/efeitos dos fármacos , Neurotransmissores/metabolismo , Animais , Transporte Biológico , Bovinos , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Dimetil Sulfóxido/química , Técnicas Eletroquímicas , Cinética
3.
Anal Chem ; 88(17): 8841-8, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27462909

RESUMO

In this work, we have employed time-of-flight secondary ion mass spectrometry (ToF-SIMS) to image chemically fixed adrenal cells prepared for transmission electron microscopy (TEM) and subsequent high-spatial-resolution NanoSIMS imaging. The sample fixation methodology preserves cell morphology, allows analysis in the ultrahigh vacuum environment, and reduces topographic artifacts, thus making these samples particularly favorable for ToF-SIMS analysis. ToF-SIMS imaging enables us to determine the chemistry and preservation capabilities of the chemical fixation as well as to locate specific ion species from OsO4. The OsO4 species have been localized in lysosomes of cortical cells, a type of adrenal cell present in the culture. NanoSIMS imaging of the (190)Os(16)O(-) ion species in cortical cells reveals the same localization as a wide range of OsO4 ions shown with ToF-SIMS. Even though we did not use during NanoSIMS imaging the exact OsxOy(-) ion species discovered with ToF-SIMS, ToF-SIMS allowed us to define the specific subcellular features in a high spatial resolution imaging mode. This study demonstrates the possibility for application of ToF-SIMS as a screening tool to optimize high-resolution imaging with NanoSIMS, which could replace TEM for localization in ultrahigh resolution imaging analyses.


Assuntos
Glândulas Suprarrenais/citologia , Imagem Multimodal , Nanotecnologia , Espectrometria de Massa de Íon Secundário , Animais , Bovinos , Células Cultivadas , Fatores de Tempo
4.
Anal Chem ; 88(4): 2080-7, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771211

RESUMO

We report the lithographic microfabrication of a movable thin film microelectrode array (MEA) probe consisting of 16 platinum band electrodes placed on top of a supporting borosilicate glass substrate. These 1.2 µm wide electrodes were tightly packed and positioned parallel in two opposite rows within a 20 µm × 25 µm square area and with a distance less than 10 µm from the edge of the glass substrate. We demonstrate the ability to control and place the probe in close proximity to the surface of adherent bovine chromaffin cells and to amperometrically record single exocytosis release events with high spatiotemporal resolution. The two-dimensional position of single exocytotic events occurring in the center gap area separating the two rows of MEA band electrodes and that were codetected by electrodes in both rows was determined by analysis of the fractional detection of catecholamine released between electrodes and exploiting random walk simulations. Hence, two-dimensional electrochemical imaging recording of exocytosis release between the electrodes within this area was achieved. Similarly, by modeling the current spikes codetected by parallel adjacent band electrodes positioned in the same electrode row, a one-dimensional imaging of exocytosis with submicrometer resolution was accomplished within the area. The one- and two-dimensional electrochemical imaging using the MEA probe allowed for high spatial resolution of exocytosis activity and revealed heterogeneous release of catecholamine at the chromaffin cell surface.


Assuntos
Técnicas Eletroquímicas , Exocitose/fisiologia , Animais , Carbono/química , Fibra de Carbono , Bovinos , Células Cromafins/citologia , Células Cromafins/metabolismo , Eletrodos , Microtecnologia , Platina/química
5.
Faraday Discuss ; 193: 65-79, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711871

RESUMO

The mechanism of mammalian vesicle rupture onto the surface of a polarized carbon fiber microelectrode during electrochemical vesicle cytometry is investigated. It appears that following adsorption to the surface of the polarized electrode, electroporation leads to the formation of a pore at the interface between a vesicle and the electrode and this is shown to be potential dependent. The chemical cargo is then released through this pore to be oxidized at the electrode surface. This makes it possible to quantify the contents as it restricts diffusion away from the electrode and coulometric oxidation takes place. Using a bottom up approach, lipid-only transmitter-loaded liposomes were used to mimic native vesicles and the rupture events occurred much faster in comparison with native vesicles. Liposomes with added peptide in the membrane result in rupture events with a lower duration than that of liposomes and faster in comparison to native vesicles. Diffusional models have been developed and suggest that the trend in pore size is dependent on soft nanoparticle size and diffusion of the content in the nanometer vesicle. In addition, it appears that proteins form a barrier for the membrane to reach the electrode and need to move out of the way to allow close contact and electroporation. The protein dense core in vesicles matrixes is also important in the dynamics of the events in that it significantly slows diffusion through the vesicle.


Assuntos
Células Cromafins/química , Exocitose , Vesículas Extracelulares/química , Lipossomos/química , Adsorção , Animais , Difusão , Eletroporação , Neurotransmissores/química , Oxirredução
6.
Angew Chem Int Ed Engl ; 55(48): 15081-15085, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805774

RESUMO

Electrochemical cytometry is a method developed recently to determine the content of an individual cell vesicle. The mechanism of vesicle rupture at the electrode surface involves the formation of a pore at the interface between a vesicle and the electrode through electroporation, which leads to the release and oxidation of the vesicle's chemical cargo. We have manipulated the membrane properties using excited fluorophores conjugated to lipids, which appears to make the membrane more susceptible to electroporation. We propose that by having excited fluorophores in close contact with the membrane, membrane lipids (and perhaps proteins) are oxidized upon production of reactive oxygen species, which then leads to changes in membrane properties and the formation of water defects. This is supported by experiments in which the fluorophores were placed on the lipid tail instead of the headgroup, which leads to a more rapid onset of vesicle opening. Additionally, application of DMSO to the vesicles, which increases the membrane area per lipid, and decreasing the membrane thickness result in the same enhancement in vesicle opening, which confirms the mechanism of vesicle opening with excited fluorophores in the membrane. Light-induced manipulation of membrane vesicle pore opening might be an attractive means of controlling cell activity and exocytosis. Additionally, our data confirm that in experiments in which cells or vesicle membranes are labeled for fluorescence monitoring, the properties of the excited membrane change substantially.


Assuntos
Células Cromafins/citologia , Técnicas Eletroquímicas , Citometria de Fluxo , Corantes Fluorescentes/química , Animais , Células Cromafins/metabolismo , Eletrodos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
7.
J Am Chem Soc ; 137(13): 4344-6, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25811247

RESUMO

We present the electrochemical response to single adrenal chromaffin vesicles filled with catecholamine hormones as they are adsorbed and rupture on a 33 µm diameter disk-shaped carbon electrode. The vesicles adsorb onto the electrode surface and sequentially spread out over the electrode surface, trapping their contents against the electrode. These contents are then oxidized, and a current (or amperometric) peak results from each vesicle that bursts. A large number of current transients associated with rupture of single vesicles (86%) are observed under the experimental conditions used, allowing us to quantify the vesicular catecholamine content.


Assuntos
Catecolaminas/química , Células Cromafins/química , Glândulas Suprarrenais/citologia , Adsorção , Animais , Carbono/química , Bovinos , Eletroquímica , Eletrodos
8.
Pharmaceutics ; 14(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214195

RESUMO

The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic ß-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.

9.
Neurophotonics ; 4(2): 020901, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28466025

RESUMO

Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the "history" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology.

10.
ACS Nano ; 11(4): 3446-3455, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27997789

RESUMO

We report an approach to spatially resolve the content across nanometer neuroendocrine vesicles in nerve-like cells by correlating super high-resolution mass spectrometry imaging, NanoSIMS, with transmission electron microscopy (TEM). Furthermore, intracellular electrochemical cytometry at nanotip electrodes is used to count the number of molecules in individual vesicles to compare to imaged amounts in vesicles. Correlation between the NanoSIMS and TEM provides nanometer resolution of the inner structure of these organelles. Moreover, correlation with electrochemical methods provides a means to quantify and relate vesicle neurotransmitter content and release, which is used to explain the slow transfer of dopamine between vesicular compartments. These nanoanalytical tools reveal that dopamine loading/unloading between vesicular compartments, dense core and halo solution, is a kinetically limited process. The combination of NanoSIMS and TEM has been used to show the distribution profile of newly synthesized dopamine across individual vesicles. Our findings suggest that the vesicle inner morphology might regulate the neurotransmitter release event during open and closed exocytosis from dense core vesicles with hours of equilibrium needed to move significant amounts of catecholamine from the protein dense core despite its nanometer size.


Assuntos
Dopamina/análise , Nanoestruturas/química , Nanotecnologia , Animais , Catecolaminas/química , Catecolaminas/isolamento & purificação , Portadores de Fármacos/química , Eletrodos , Exocitose , Microscopia Eletrônica de Transmissão , Neurotransmissores/química , Neurotransmissores/metabolismo , Células PC12 , Tamanho da Partícula , Ratos , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
11.
Surf Interface Anal ; 46(Suppl 1): 74-78, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25918450

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is an important technique for studying chemical composition of micrometer scale objects due to its high spatial resolution imaging capabilities and chemical specificity. In this work we focus on the application of ToF-SIMS to gain insight into the chemistry of micrometer size liposomes as a potential model for neurotransmitter vesicles. Two models of giant liposomes were analyzed: histamine and aqueous two phase system (ATPS)-containing liposomes. Characterization of the internal structure of single fixed liposomes was done both with the Bi3+ and C60+ ion sources. The depth profiling capability of ToF-SIMS was used to investigate the liposome interior.

12.
Behav Brain Res ; 214(2): 301-16, 2010 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-20678986

RESUMO

Sex differences in systemic morphine analgesia occur with male rodents displaying significantly greater analgesic magnitudes and potencies than females. Neonatal androgenization, and to a lesser degree, adult ovariectomy enhance systemic morphine analgesia in female rats, implicating both organizational and activational effects of gonadal hormones. The neuroanatomical circuits sensitive to sex-related hormones by which females display a smaller opiate analgesic effect is not clear, but the ventromedial (VMH) and medial preoptic (MPOA) hypothalamic nuclei are critical in the monitoring of estradiol and other sex hormone levels. To assess the contribution of these nuclei to sex and adult gonadectomy differences in systemic morphine analgesia, intact male, intact female and adult ovariectomized (OVEX) female rats received bilateral saline (SAL) or ibotenic acid (IBO) microinjections into either the VMH or MPOA. Following surgeries, baseline tail-flick latencies over 120 minutes (min) were assessed over 4 days in all nine groups with intact females tested in the estrus phase of their cycle. All animals then received an ascending series of morphine (1.0, 2.5, 5.0, 7.5, 10.0mg/kg) injections 30min prior to the tail-flick test time course with 8-12 day inter-injection intervals between doses. Baseline latencies failed to differ between SAL-treated intact males and females, but were significantly higher in SAL-treated OVEX females. Both VMH IBO and MPOA IBO lesions increased baseline latencies in intact male and female rats, but not in OVEX females. SAL-treated intact males (ED(50)=4.0mg/kg) and SAL-treated OVEX females (ED(50)=3.5mg/kg) displayed significantly greater potencies of systemic morphine analgesia than SAL-treated intact females (ED(50)=6.3mg/kg), confirming previous gender and gonadectomy differences. Neither VMH IBO (ED(50)=3.7 mg/kg) nor MPOA IBO (ED(50)=4.1mg/kg) males differed from SAL-treated males in the potency of systemic morphine analgesia. In contrast, VMH IBO (ED(50)=4.1mg/kg) and MPOA IBO (ED(50)=3.5mg/kg) intact females displayed significantly greater potencies in systemic morphine analgesia than SAL-treated intact females. However, VMH IBO OVEX (ED(50)=3.5mg/kg) and MPOA IBO OVEX (ED(50)=3.9 mg/kg) failed to differ from SAL-treated OVEX females in the potency of systemic morphine analgesia. The magnitudes of systemic morphine analgesia as measured by Maximum Percentage Effect values displayed similar patterns, but lesser degrees, of effects. These data suggest that VMH and MPOA nuclei act to tonically inhibit endogenous pain-inhibitory circuits in the intact female, but not intact male brain, and that removal of circulating gonadal hormones by OVEX and/or excitotoxic destruction of these estrogen receptor accumulating nuclei disinhibit the female analgesic response to systemic morphine.


Assuntos
Analgésicos Opioides/farmacologia , Ácido Ibotênico/administração & dosagem , Morfina/farmacologia , Área Pré-Óptica/fisiologia , Caracteres Sexuais , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Microinjeções , Ovariectomia , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa