RESUMO
The study of pediatric head injury relies heavily on the use of finite element models and child anthropomorphic test devices (ATDs). However, these tools, in the context of pediatric head injury, have yet to be validated due to a paucity of pediatric head response data. The goal of this study is to investigate the response and injury tolerance of the pediatric head to impact. Twelve pediatric heads were impacted in a series of drop tests. The heads were dropped onto five impact locations (forehead, occiput, vertex and right and left parietal) from drop heights of 15 and 30â¯cm. The head could freely fall without rotation onto a flat 19â¯mm thick platen. The impact force was measured using a 3-axis piezoelectric load cell attached to the platen. Age and drop height were found to be significant factors in the impact response of the pediatric head. The head acceleration (14%-15â¯cm; 103-30â¯cm), Head Injury Criterion (HIC) (253%-15â¯cm; 154%-30â¯cm) and impact stiffness (5800%-15â¯cm; 3755%-30â¯cm) when averaged across all impact locations increased with age from 33â¯weeks gestation to 16â¯years, while the pulse duration (66%-15â¯cm; 53%-30â¯cm) decreased with age. Increases in head acceleration, HIC and impact stiffness were also observed with increased drop height, while pulse duration decreased with increased drop height. One important observation was that three of the four cadaveric heads between the ages of 5-months and 22-months sustained fractures from the 15â¯cm and 30â¯cm drop heights. The 5-month-old sustained a right parietal linear fracture while the 11- and 22-month-old sustained diastatic linear fractures.
Assuntos
Traumatismos Craniocerebrais/patologia , Fraturas Ósseas/etiologia , Aceleração , Adolescente , Fatores Etários , Fenômenos Biomecânicos , Cadáver , Criança , Pré-Escolar , Feminino , Fraturas Ósseas/patologia , Humanos , Lactente , Masculino , Modelos Biológicos , RotaçãoRESUMO
Head injury is a persistent and costly problem for both children and adults. Globally, approximately 10 million people are hospitalized each year for head injuries. Knowing the structural properties of the head is important for modeling the response of the head in impact, and for providing insights into mechanisms of head injury. Hence, the goal of this study was to measure the sub-injurious structural stiffness of whole pediatric heads. 12 cadaveric pediatric (20-week-gestation to 16 years old) heads were tested in a battery of viscoelastic compression tests. The heads were compressed in both the lateral and anterior-posterior directions to 5% of gauge length at normalized deformation rates of 0.0005/s, 0.01/s, 0.1/s, and 0.3/s. Because of the non-linear nature of the response, linear regression models were used to calculate toe region (<2.5%) and elastic region (>2.5%) stiffness separately so that meaningful comparisons could be made across rate, age, and direction. The results showed that age was the dominant factor in predicting the structural stiffness of the human head. A large and statistically significant increase in the stiffness of both the toe region and the elastic region was observed with increasing age (p<0.0001), but no significant difference was seen across direction or normalized deformation rate. The stiffness of the elastic region increased from as low as 5 N/mm in the neonate to >4500 N/mm in the 16 year old. The changes in stiffness with age may be attributed to the disappearance of soft sutures and the thickening of skull bones with age.
Assuntos
Força Compressiva , Traumatismos Craniocerebrais/fisiopatologia , Crânio/ultraestrutura , Adolescente , Cadáver , Criança , Pré-Escolar , Feminino , Cabeça , Humanos , Lactente , Modelos Lineares , MasculinoRESUMO
The morphological and mechanical properties of the pediatric skull are important in understanding pediatric head injury biomechanics. Although previous studies have analyzed the morphology of cranial sutures, none has done so in pediatric specimens nor have previous studies related the morphology to mechanical properties of human sutures. This study quantified the geometry of pediatric cranial sutures and investigated its correlation with the suture mechanical properties. First, the suture fiber alignment was quantified using histological analysis for four ages-neonate, 9 months-old, 11 months-old, and 18 months-old. For the morphometric investigation of the suture interdigitation, suture samples from a 6-year-old were scanned using micro-CT and the level of interdigitation was measured using two techniques. The first technique, the sinuosity index, was calculated by dividing the suture path along the surface of the skull by the suture distance from beginning to end. The second technique, the surface area interdigitation index, was calculated by measuring the surface area of the bone interface outlining the suture and dividing it by the cross-sectional area of the bone. The mechanical properties were obtained using methods reported in Davis et al.6. The results of the histological analysis showed a significant increase in fiber alignment in older specimen; where random fiber alignment has an average angle deviation of 45°, neonatal suture fibers have an average deviation of 32.2° and the 18-month-old fibers had an average deviation of 16.2° (p < 0.0001). For the suture index measurements, only the sinuosity was positively correlated with the ultimate strain (R (2) = 0.62, Bonferroni corrected p = 0.011) but no other measurements showed a significant relationship, including the amount of interdigitation and elastic modulus. Our results demonstrate that there is a distinct developmental progression of the suture fiber alignment at a young age, but the differences in suture interdigitation can only predict the ultimate strain and no other mechanical properties.
Assuntos
Suturas Cranianas/diagnóstico por imagem , Traumatismos Craniocerebrais/diagnóstico por imagem , Microtomografia por Raio-X , Criança , Suturas Cranianas/fisiopatologia , Traumatismos Craniocerebrais/fisiopatologia , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
Given the high incidence of TBI, head injury has been studied extensively using both cadavers and anthropomorphic test devices (ATDs). However, few studies have benchmarked the response of ATD heads against human data. Hence, the objective of this study is to investigate the response of adult and ATD heads in impact, and to compare adult Hybrid III head responses to the adult head responses. In this study, six adult human heads and seven ATD heads were used to obtain impact properties. The heads were dropped from both 15cm and 30cm onto five impact locations: right and left parietal, forehead, occiput and vertex. One set of drops were performed on the human heads and up to four sets were carried out on the ATD heads. For each drop, the head was placed into a fine net and positioned to achieve the desired drop height and impact location. The head was then released to allow free fall without rotation onto a flat aluminum 34 -inch thick platen. The platen was attached to a three-axis piezoelectric load cell to measure the impact force. The peak resultant acceleration, head impact criterion (HIC) and impact stiffness were calculated using the force/time curve and drop mass. No statistical differences were found between the adult human heads and the adult Hybrid III head for 15cm and 30cm impacts (p>0.05). For the human heads, the mid-sagittal impact locations produced the highest HIC and peak acceleration values. The parietal impacts produced HICs and peak accelerations that were 26-48% lower than those from the mid-sagittal impacts. For the ATD heads, the acceleration and HIC values generally increased with represented age, except for the Q3, which produced HIC values up to higher than the other ATD heads. The impact responses of the adult Hybrid III onto different impact locations were found to adequately represent the impact stiffness of human adult head impacts from 30cm and below onto a rigid surface. The Q3 dummy consistently produced the highest HIC values of the ATD heads, and produced higher acceleration and HIC values than the adult human heads as well, which is contrary to neonatal data demonstrating that the head acceleration increases with age.
Assuntos
Aceleração , Cadáver , Traumatismos Craniocerebrais , Cabeça/fisiologia , Manequins , Idoso , Fenômenos Biomecânicos , Lesões Encefálicas , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-IdadeRESUMO
Elasticity imaging phantoms are used to mimic human tissue as a means of testing and validating non-invasive techniques for measuring mechanical properties of human tissues. Limited studies of phantom stability have shown that phantom stiffness change over time when exposed to air. The goals of this study were to investigate how the physical and mechanical properties of elasticity imaging phantoms change with time and moisture state. Two moisture states were tested; a dry state where the phantom was exposed to open air and a wet state where the phantom was submerged in water for 480 minutes. Polyvinyl alcohol (PVA) phantoms (cylindrical shape) were used. The properties of the phantom were found using flat indentation tests and a test battery that included a precondition test, a 0.05 mm/s triangle test, a 5 mm/s triangle test and a ten-second ramp-and-hold relaxation test. This battery was done at multiple time points: 0, 15, 30, 45, 60, 120, 180, 240, 360 and 480 minutes. At each time point, the modulus, stiffness and relaxation at 10 seconds were calculated. In addition, the mass and volume of the phantoms were measured at each time point. The physical and mechanical properties of the phantoms were found to be statistically dependent on moisture state and time (p<0.05). The stiffness and moduli of the dry samples increased with time while the mass and volume decreased with time. Additionally, a strong correlation was found between the change in mass and change in modulus/stiffness for the dry phantoms. For the wet samples, the modulus and stiffness decreased with time while the mass and volume increase with time. The properties of the phantom begin to change within 15 minutes, the percentage change of the mechanical and physical properties remained, on average, under 10% during the first hour and increased up to 50% during 8 hours. These property changes of phantoms should be considered when using phantoms to test or validate non-invasive techniques.
Fantomas de imágenes de elasticidad se utilizan para imitar el tejido humano como un medio de ensayo y validación de técnicas no invasivas para medir las propiedades mecánicas de los tejidos humanos. La estabilidad de los fantomas se ha estudiado anteriormente y se ha encontrado que su elasticidad cambia con respecto al tiempo cuando están expuestas al aire. Los objetivos de este estudio fueron investigar cómo las propiedades físicas y mecánicas de los fantomas de imágenes de elasticidad cambian con el tiempo y el estado de humedad. Dos estados de humedad fueron examinados; un estado seco, donde el fantoma se expone al aire libre y un estado húmedo, donde el fantoma se sumergió en el agua. Se utiliza alcohol polivinílico (PVA) para crear los fantomas (forma cilíndrica). Las propiedades del fantoma se encontraron utilizando pruebas de indentación planas y una batería de pruebas que incluyeron una prueba de condición, a 0.05 mm/s prueba triangular, una prueba triangular 5 mm/s, y ensayo de relajación de rampa-retención de diez segundos. Esta batería se realiza en múltiples puntos de tiempo: 0, 15, 30, 45, 60, 120, 180, 240, 360 y 480 minutos. En cada punto de tiempo, se calcularon el módulo, la rigidez y la relajación en 10 segundos. Además, la masa y el volumen de los fantomas se midieron en cada punto de tiempo. Se encontró que las propiedades físicas y mecánicas de los fantomas son dependientes estadísticamente del estado de humedad y el tiempo (p <0,05). La rigidez y módulos de las muestras secas se incrementaron con el tiempo mientras que la masa y el volumen disminuyó con el tiempo. Adicionalmente, una fuerte correlación fue encontrada entre los cambios de masa respecto al cambio de módulo para las muestras secas. Para las muestras húmedas, el módulo y la rigidez disminuyeron con el tiempo, mientras que aumentó la masa y el volumen con el tiempo. Las propiedades de los fantomas comienzan a cambiar dentro de los 15 minutos, pero el porcentaje de cambio de las propiedades mecánicas y físicas se mantuvo, en promedio, menos del 10% durante la primera hora y aumentó hasta el 50% en las 8 horas. Estos cambios en las propiedades de los fantomas deben ser considerados cuando se utilizan para probar o validar las técnicas no invasivas.
Fantomas de imagenes de elasticidade foram utilizadas para imitar o tecido humano como um meio de testes e validação de técnicas não invasivas para medir as propriedades mecânicas dos tecidos humanos. A estabilidade dos fantomas foi estudada previamente e descobriram que a elasticidade se altera com o tempo quando é exposta ao ar. Os objetivos deste estudo foram investigar como as propriedades físicas e mecânicas dos fantomas de imagem de elasticidade mudam ao longo do tempo e o estado de umidade. Dois estados de umidade foram examinados; um estado de seca, em que o fantoma está exposta ao ar livre e um estado úmido, onde o fantoma foi imersa em água. é usado Álcool polivinílico (PVA) para criar o fantoma (forma cilíndrica). As propriedades do fantoma foram encontrados por meio de testes de indentação planas e uma bateria de testes, incluindo um teste de condição, a 0,05 mm / s teste triangular, um teste triangular de 5 mm / s, e teste de relaxamento rampa de Retenção de dez segundos. Esta bateria é realizada em vários pontos de tempo: 0, 15, 30, 45, 60, 120, 180, 240, 360 e 480 minutos. Em cada ponto de tempo, foram calculados o módulo de elasticidade, rigidez e relaxamento em 10 segundos,. Além disso, a massa e volume dos fantomas foram medidos em cada ponto de tempo. Verificou-se que as propriedades físicas e mecânicas dos fantomas são dependentes estatisticamente do estado de umidade e tempo (p <0,05). A rigidez e módulos das amostras secas aumentou com o tempo, enquanto a massa e volume diminuiu com o tempo. Além disso, foi encontrada uma forte correlação entre as alterações na massa com respeito à alteração do módulo para amostras secas. Para as amostras molhadas, o módulo de elasticidade e rigidez diminuiu ao longo do tempo, enquanto o aumento da massa e do volume ao longo do tempo. As propriedades dos fantomas começam a mudar dentro dos 15 minutos, mas a percentagem de variação das propriedades mecânicas e físicas permaneceram, em média, menos de 10% durante a primeira hora, e aumentou até 50% em 8 horas. Essas alterações nas propriedades dos fantomas deve ser considerado quando é usado para testar ou validar as técnicas não invasivas.