Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Opt Express ; 32(2): 1914-1925, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297733

RESUMO

A high-factor interpolation method based on space-time modulation and a Kalman filter for optical encoders is proposed. Space-time modulation employs a reference time signal to modulate the output displacement signal of the optical encoder into a displacement space-time signal. Subsequently, high-frequency pulse signals are used for interpolation, which detect the phase of the reference time signal and the displacement space-time signal to obtain displacement information from the optical encoder output. The interpolation factor of this method depends on the frequencies of the high-frequency pulse signal and the reference time signal, and is independent of the moving speed. A Kalman filter is employed to estimate the velocity, compensating for time lag errors in the displacement information output by space-time modulation to improve the real-time performance of displacement output. The proposed method is simple and effective, which can be implemented on an FPGA. The effectiveness of the proposed method is verified through simulation and experimentation.

2.
Opt Express ; 32(4): 4998-5010, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439237

RESUMO

Aiming to enhance the ns-LIBS signal, in this work, we introduced orbital angular momentum to modulate the laser phase of the Gaussian beam into the vortex beam. Under similar incident laser energy, the vortex beam promoted more uniform ablation and more ablation mass compared to the Gaussian beam, leading to elevated temperature and electron density in the laser-induced plasma. Consequently, the intensity of the ns-LIBS signal was improved. The enhancement effects based on the laser phase modulation were investigated on both metallic and non-metallic samples. The results showed that laser phase modulation resulted in a maximum 1.26-times increase in the peak intensities and a maximum 1.25-times increase in the signal-to-background ratio (SBR) of the Cu spectral lines of pure copper for a laser energy of 10 mJ. The peak intensities of Si atomic spectral lines were enhanced by 1.58-1.94 times using the vortex beam. Throughout the plasma evolution process, the plasma induced by the vortex beam exhibited prolonged duration and a longer continuous background, accompanied by a noticeable reduction in the relative standard deviation (RSD). The experimental results demonstrated that modulation the laser phase based on orbital angular momentum is a promising approach to enhancing the ns-LIBS signal.

3.
Opt Express ; 31(18): 28701-28715, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710685

RESUMO

This study investigates the effect of surface roughness on the diffraction efficiency of two-dimensional gratings. Firstly, a roughness model was constructed using FDTD, followed by a significant analysis of the ridge roughness, groove roughness, and sidewall roughness on diffraction efficiency. Then, the impact of each roughness type on diffraction efficiency was studied separately. Results indicate that ridge roughness has a negative impact on diffraction efficiency, whereas groove roughness and sidewall roughness have a positive impact on the diffraction efficiency of two-dimensional gratings. When ridge, groove, and sidewall roughness coexist, diffraction efficiency decreases with an increase in roughness, consistent with previous research. However, under conditions of minimal roughness, diffraction efficiency actually increases. Finally, an experiment was conducted to verify the conclusions. The results of this study have significant reference value for the application and development of precision measurement techniques for gratings.

4.
J Ultrasound Med ; 41(6): 1385-1396, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34510491

RESUMO

OBJECTIVE: To assess the feasibility and accuracy of 3D printing with prenatal three-dimensional ultrasound (3DUS) in the diagnosis of fetal abnormalities. METHODS: Fetuses initially diagnosed with various abnormalities were included in this retrospective study. The fetuses were examined by 3DUS, modeled, and 3D printed, and the dimensional accuracy of the 3D prints was analyzed. The effectiveness, demand, necessity of 3D printing, and the diagnostic accuracy of different methods were analyzed based on questionnaire responses from 40 senior ultrasound doctors and 40 postgraduate students. RESULTS: A total of 12 fetuses with cleft lip and palate, spinal, heart, or brain abnormalities were included for detailed assessment. All deviations (mean deviation: 0.1 mm) between the original images and the final 3D prints lay within the consistency boundary (-1.12, 1.31 mm) (P > .05). In the subsequent analyses, 90.8% of the doctors and 94.2% of the students strongly agreed that 3D printing could precisely represent and depict fetal abnormalities. The average misdiagnosis rate of the doctors decreased from 5% to 0.4% after the application of 3D printing combined with 3DUS in comparison with 3DUS alone, and the corresponding value for the students dropped from 17.9% to 5.2%. CONCLUSIONS: The errors in modeling and 3D printing based on 3DUS were within acceptable limits, and 3D printing improved the diagnosis of various fetal abnormalities.


Assuntos
Fenda Labial , Fissura Palatina , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Gravidez , Impressão Tridimensional , Estudos Retrospectivos , Ultrassonografia Pré-Natal/métodos
5.
Langmuir ; 36(48): 14728-14736, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33225710

RESUMO

Because of its promising applications in various fields such as in vivo drug treatment, in-pipe inspection, and so forth, there is an increasing interest on wireless soft robot boats taking advantages of their shape adaptability. The loading capacity and mobility, however, are always fundamental challenges to restrict their applications. In this study, a graphene-based soft robot boat, which could be programmable-driven by a remote near-infrared light, is proposed. Different microstructures underneath the boat are carefully designed and employed to improve both the loading capacity and the moving ability. It reveals that, compared to that without microstructures, the soft robot boat with square pillar arrays (120-160 µm of period, duty cycle, and aspect ratio at active Wenzel/Cassie transition point) could enhance the loading capacity by 12.75% and the moving velocity by 16.70%. For the robot boat with grating structures, a strong driving anisotropy is revealed, with an enhancement of 2.24% for the loading capacity and 34.65% for the driving response along the grating lines. A boat prototype with a self-weight of 6.05 g is finally developed and can achieve continuous navigation in a closed narrow space for in situ monitoring, which may find applications in the inspection of other narrow terrains (e.g., blood vessels).

6.
Small ; 13(23)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452402

RESUMO

Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high-performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE))/barium titanate (BaTiO3 ) for energy harvesting and highly sensitive self-powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF-TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm-2 , which an enhancement by a factor of 7.3 relatives to the pristine P(VDF-TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF-TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self-powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.

7.
Materials (Basel) ; 17(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930346

RESUMO

Pinch milling is a new technique for slender and long blade machining, which can simultaneously improve the machining quality and efficiency. However, two-cutter orientation planning is a major challenge due to the irregular blade surfaces and the structural constraints of nine-axis machine tools. In this paper, a method of twin-tool smoothing orientation determination is proposed for a thin-walled blade with pinch milling. Considering the processing status of the two cutters and workpiece, the feasible domain of the twin-tool axis vector and its characterization method are defined. At the same time, an evaluation algorithm of global and local optimization is proposed, and a smoothing algorithm is explored within the feasible domain along the two tool paths. Finally, a set of smoothly aligned tool orientations are generated, and the overall smoothness is nearly globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a turbine blade model and the planning tool orientation is found to be stable, smooth, and well formed, which avoids collision interference and ultimately improves the machining accuracy of the blade with difficult-to-machine materials.

8.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000807

RESUMO

This study aimed to develop Janus-, cross-network-, and coaxial-structured piezoelectric-conductive polymer nanofibers through electrospinning to mimic the piezoelectricity of bone and facilitate the conduction of electrical signals in bone tissue repair. These nanofibers were constructed using the piezoelectric polymer polyvinylidene fluoride, and the conductive fillers reduced graphene oxide and polypyrrole. The influence of structural features on the electroactivity of the fibers was also explored. The morphology and components of the various structural samples were characterized using SEM, TEM, and FTIR. The electroactivity of the materials was assessed with a quasi-static d33 meter and the four-probe method. The results revealed that the piezoelectric-conductive phases were successfully integrated. The Janus-structured nanofibers demonstrated the best electroactivity, with a piezoelectric constant d33 of 24.5 pC/N and conductivity of 6.78 × 10-2 S/m. The tensile tests and MIP measurements showed that all samples had porosity levels exceeding 70%. The tensile strength of the Janus and cross-network structures exceeded that of the periosteum (3-4 MPa), with average pore sizes of 1194.36 and 2264.46 nm, respectively. These properties indicated good mechanical performance, allowing material support while preventing fibroblast invasion. The CCK-8 and ALP tests indicated that the Janus-structured samples were biocompatible and significantly promoted the proliferation of MC3T3-E1 cells.

9.
Sci Adv ; 10(10): eadk3854, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446880

RESUMO

Liquid crystal elastomers (LCEs) have garnered attention for their remarkable reversible strains under various stimuli. Early studies on LCEs mainly focused on basic dimensional changes in macrostructures or quasi-three-dimensional (3D) microstructures. However, fabricating complex 3D microstructures and cross-scale LCE-based structures has remained challenging. In this study, we report a compatible method named melt electrowriting (MEW) to fabricate LCE-based microfiber actuators and various 3D actuators on the micrometer to centimeter scales. By controlling printing parameters, these actuators were fabricated with high resolutions (4.5 to 60 µm), actuation strains (10 to 55%), and a maximum work density of 160 J/kg. In addition, through the integration of a deep learning-based model, we demonstrated the application of LCE materials in temperature field sensing. Large-scale, real-time, LCE grid-based spatial temperature field sensors have been designed, exhibiting a low response time of less than 42 ms and a high precision of 94.79%.

10.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903127

RESUMO

This study developed an experimental system based on Joule heat of sliding-pressure additive manufacturing (SP-JHAM), and Joule heat was used for the first time to accomplish high-quality single-layer printing. The roller wire substrate is short-circuited, and Joule heat is generated to melt the wire when the current passes through. Through the self-lapping experimental platform, single-factor experiments were designed to study the effects of power supply current, electrode pressure, contact length on the surface morphology and cross-section geometric characteristics of the single-pass printing layer. Through the Taguchi method, the effect of various factors was analyzed, the optimal process parameters were obtained, and the quality was detected. The results show that with the current increase, the aspect ratio and dilution rate of a printing layer increase within a given range of process parameters. In addition, with the increase in pressure and contact length, the aspect ratio and dilution ratio decrease. Pressure has the greatest effect on the aspect ratio and dilution ratio, followed by current and contact length. When a current of 260 A, a pressure of 0.60 N and a contact length of 1.3 mm are applied, a single track with a good appearance, whose surface roughness Ra is 3.896 µm, can be printed. Additionally, the wire and the substrate are completely metallurgically bonded with this condition. There are also no defects such as air holes and cracks. This study verified the feasibility of SP-JHAM as a new additive manufacturing strategy with high quality and low cost, and provided a reference for developing additive manufacturing technology based on Joule heat.

11.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896366

RESUMO

Three-dimensional printing technology has fundamentally revolutionized the product development processes in several industries. Three-dimensional printing enables the creation of tailored prostheses and other medical equipment, anatomical models for surgical planning and training, and even innovative means of directly giving drugs to patients. Polymers and their composites have found broad usage in the healthcare business due to their many beneficial properties. As a result, the application of 3D printing technology in the medical area has transformed the design and manufacturing of medical devices and prosthetics. Polymers and their composites have become attractive materials in this industry because of their unique mechanical, thermal, electrical, and optical qualities. This review article presents a comprehensive analysis of the current state-of-the-art applications of polymer and its composites in the medical field using 3D printing technology. It covers the latest research developments in the design and manufacturing of patient-specific medical devices, prostheses, and anatomical models for surgical planning and training. The article also discusses the use of 3D printing technology for drug delivery systems (DDS) and tissue engineering. Various 3D printing techniques, such as stereolithography, fused deposition modeling (FDM), and selective laser sintering (SLS), are reviewed, along with their benefits and drawbacks. Legal and regulatory issues related to the use of 3D printing technology in the medical field are also addressed. The article concludes with an outlook on the future potential of polymer and its composites in 3D printing technology for the medical field. The research findings indicate that 3D printing technology has enormous potential to revolutionize the development and manufacture of medical devices, leading to improved patient outcomes and better healthcare services.

12.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107505

RESUMO

Fritillaria has a long history in China, and it can be consumed as medicine and food. Owing to the high cost of Fritillaria cirrhosa, traders sometimes mix it with the cheaper Fritillaria thunbergii powder to make profit. Herein, we proposed a laser-induced breakdown spectroscopy (LIBS) technique to test the adulteration present in the sample of Fritillaria cirrhosa powder. Experimental samples with different adulteration levels were prepared, and their LIBS spectra were obtained. Partial least squares regression (PLSR) was adopted as the quantitative analysis model to compare the effects of four data standardization methods, namely, mean centring, normalization by total area, standard normal variable, and normalization by the maximum, on the performance of the PLSR model. Principal component analysis and least absolute shrinkage and selection operator (LASSO) were utilized for feature extraction and feature selection, and the performance of the PLSR model was determined based on its quantitative analysis. Subsequently, the optimal number of features was determined. The residuals were corrected using support vector regression (SVR). The mean absolute error and root mean square error of prediction obtained from the quantitative analysis results of the combined LASSO-PLSR-SVR model for the test set data were 5.0396% and 7.2491%, respectively, and the coefficient of determination R2 was 0.9983. The results showed that the LIBS technique can be adopted to test adulteration in the sample of Fritillaria cirrhosa powder and has potential applications in drug quality control.

13.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231901

RESUMO

Mechanical metamaterials with ultralight and ultrastrong mechanical properties are extensively employed in various industrial sectors, with three-periodic minimal surface (TPMS) structures gaining significant research attention due to their symmetry, equation-driven characteristics, and exceptional mechanical properties. Compared to traditional lattice structures, TPMS structures exhibit superior mechanical performance. The mechanical properties of TPMS structures depend on the base material, structural porosity (volume fraction), and wall thickness. Hard rigid lattice structures such as Gyroid, diamond, and primitive exhibit outstanding performance in terms of elastic modulus, energy absorption, heat dissipation, and heat transfer. Flexible TPMS lattice structures, on the other hand, offer higher elasticity and recoverable large deformations, drawing attention for use in applications such as seat cushions and helmet impact-absorbing layers. Conventional fabrication methods often fail to guarantee the quality of TPMS structure samples, and additive manufacturing technology provides a new avenue. Selective laser sintering (SLS) has successfully been used to process various materials. However, due to the layer-by-layer manufacturing process, it cannot eliminate the anisotropy caused by interlayer bonding, which impacts the mechanical properties of 3D-printed parts. This paper introduces a process data-driven optimization design approach for TPMS structure geometry by adjusting volume fraction gradients to overcome the elastic anisotropy of 3D-printed isotropic lattice structures. Experimental validation and analysis are conducted using TPMS structures fabricated using TPU material via SLS. Furthermore, the advantages of volume fraction gradient-designed TPMS structures in functions such as energy absorption and heat dissipation are explored.

14.
Biomed Opt Express ; 14(7): 3469-3490, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497487

RESUMO

The glioma boundary is difficult to identify during surgery due to the infiltrative characteristics of tumor cells. In order to ensure a full resection rate and increase the postoperative survival of patients, it is often necessary to make an expansion range resection, which may have harmful effects on the quality of the patient's survival. A full-Stokes laser-induced breakdown spectroscopy (FSLIBS) theory with a corresponding system is proposed to combine the elemental composition information and polarization information for glioma boundary detection. To verify the elemental content of brain tissues and provide an analytical basis, inductively coupled plasma mass spectrometry (ICP-MS) and LIBS are also applied to analyze the healthy, boundary, and glioma tissues. Totally, 42 fresh tissue samples are analyzed, and the Ca, Na, K elemental lines and CN, C2 molecular fragmental bands are proved to take an important role in the different tissue identification. The FSLIBS provides complete polarization information and elemental information than conventional LIBS elemental analysis. The Stokes parameter spectra can significantly reduce the under-fitting phenomenon of artificial intelligence identification models. Meanwhile, the FSLIBS spectral features within glioma samples are relatively more stable than boundary and healthy tissues. Other tissues may be affected obviously by individual differences in lesion positions and patients. In the future, the FSLIBS may be used for the precise identification of glioma boundaries based on polarization and elemental characterizing ability.

15.
J Mater Sci Mater Med ; 23(9): 2217-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22669285

RESUMO

Three-dimensional printer (3DP) (Z-Corp) is a solid freeform fabrication system capable of generating sub-millimeter physical features required for tissue engineering scaffolds. By using plaster composite materials, 3DP can fabricate a universal porogen which can be injected with a wide range of high melting temperature biomaterials. Here we report results toward the manufacture of either pure polycaprolactone (PCL) or homogeneous composites of 90/10 or 80/20 (w/w) PCL/beta-tricalcium phosphate (ß-TCP) by injection molding into plaster composite porogens fabricated by 3DP. The resolution of printed plaster porogens and produced scaffolds was studied by scanning electron microscopy. Cytotoxicity test on scaffold extracts and biocompatibility test on the scaffolds as a matrix supporting murine osteoblast (7F2) and endothelial hybridoma (EAhy 926) cells growth for up to 4 days showed that the porogens removal process had only negligible effects on cell proliferation. The biodegradation tests of pure PCL and PCL/ß-TCP composites were performed in DMEM with 10 % (v/v) FBS for up to 6 weeks. The PCL/ß-TCP composites show faster degradation rate than that of pure PCL due to the addition of ß-TCP, and the strength of 80/20 PCL/ß-TCP composite is still suitable for human cancellous bone healing support after 6 weeks degradation. Combining precisely controlled porogen fabrication structure, good biocompatibility, and suitable mechanical properties after biodegradation, PCL/ß-TCP scaffolds fabricated by 3DP porogen method provide essential capability for bone tissue engineering.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/síntese química , Fosfatos de Cálcio/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Fosfatos de Cálcio/síntese química , Células Cultivadas , Simulação por Computador , Estudos de Viabilidade , Humanos , Teste de Materiais , Camundongos , Osseointegração/efeitos dos fármacos , Osseointegração/fisiologia , Poliésteres/síntese química , Porosidade , Engenharia Tecidual/instrumentação
16.
Sci Rep ; 12(1): 7136, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505074

RESUMO

The study aimed to evaluate the effectiveness of blood pool and myocardial models made by stereolithography in the diagnosis of different types of congenital heart disease (CHD). Two modeling methods were applied in the diagnosis of 8 cases, and two control groups consisting of experts and students diagnosed the cases using echocardiography with computed tomography, blood pool models, and myocardial models. The importance, suitability, and simulation degree of different models were analyzed. The average diagnostic rate before and after 3D printing was used was 88.75% and 95.9% (P = 0.001) in the expert group and 60% and 91.6% (P = 0.000) in the student group, respectively. 3D printing was considered to be more important for the diagnosis of complex CHDs (very important; average, 87.8%) than simple CHDs (very important; average, 30.8%) (P = 0.000). Myocardial models were considered most realistic regarding the structure of the heart (average, 92.5%). In cases of congenital corrected transposition of great arteries, Williams syndrome, coronary artery fistula, tetralogy of Fallot, patent ductus arteriosus, and coarctation of the aorta, blood pool models were considered more effective (average, 92.1%), while in cases of double outlet right ventricle and ventricular septal defect, myocardial models were considered optimal (average, 80%).


Assuntos
Coartação Aórtica , Cardiopatias Congênitas , Comunicação Interventricular , Ecocardiografia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Humanos , Impressão Tridimensional
17.
Chem Commun (Camb) ; 58(55): 7642-7645, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35723490

RESUMO

We report on a free-standing 3D-printed Si/PEDOT:PSS/PEG electrode based on silicon nanoparticles (Si) as an active material for lithium-ion batteries (LIBs) that are fabricated by 3D printing via digital light processing (DLP). Compared with the Si electrode prepared by the traditional method, the 3D-printed Si/PEDOT:PSS/PEG electrode developed by DLP preserves a specific discharge capacity of 1658.4 mA h g-1, with a capacity fade of 0.3% per cycle at a current density of 800 mA g-1 after 125 cycles. This helps in maintaining its structural integrity and enables it to exhibit significantly high flexibility with an enhanced load of 4.2 mg cm-2. The resulting free-standing electrode shows that 3D printing has significant potential for application to a variety of LIB technologies.

18.
Chem Commun (Camb) ; 58(98): 13660, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36453148

RESUMO

Correction for 'DLP printing of a flexible micropattern Si/PEDOT:PSS/PEG electrode for lithium-ion batteries' by Xinliang Ye et al., Chem. Commun., 2022, 58, 7642-7645, https://doi.org/10.1039/D2CC01626E.

19.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215042

RESUMO

Gel-based ionic conductors are promising candidates for flexible electronics, serving as stretchable sensors or electrodes. However, most of them suffer from a short operating life, low conductivity and rely on an external power supply, limiting their practical application. Herein, we report a stable organogel ionic conductor with high conductivity and self-powering ability. Briefly, lithium trifluoromethanesulfonate, as a conductive salt, provides high conductivity and the poly(1,1-difluoroethylene) layers, as a self-powering system, supply stable energy output under the influence of pressure. Moreover, the proposed conductors withstand long-term and multi-cycle durability tests. The prepared auxiliary training device can withstand the impact of a basketball and detect the impact force, showing potential in passive sensing during practical applications.

20.
Med Biol Eng Comput ; 60(10): 3029-3040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36053430

RESUMO

Accurate diagnosis and surgical selection of the double-outlet right ventricle (DORV) is both critical and difficult. Virtual models and three-dimensional (3D) printing have been used to provide morphological copies to doctors as reference. However, the existing methods have shortcomings in visualization of the surgical results, optimal surgical design, and accurate surgical scheme measurements. To overcome this problem, we performed surgical predictions by designing the intraventricular baffle and ventricular septal defect patch to evaluate surgical options and using 3D printing to guide the trimming of the baffle or patch. A complete set of processes including scanning, modeling, designing, 3D printing, and guiding the trimming of the baffle for the diagnosis and surgical planning of DORV was established. Six cases were used to evaluate the feasibility of this method. The average rate of misdiagnosis of the six cases by computed tomography and echocardiography was 42.5%, which was reduced to 4.6% when the diagnosis was established using the virtual models and 3D printing as auxiliary tools. The approach effectively improved diagnostic accuracy, guided the operation, and simplified the process of patch trimming. The proposed method can thus be used for improving the surgical simulation and guiding of the DORV surgery.


Assuntos
Dupla Via de Saída do Ventrículo Direito , Comunicação Interventricular , Dupla Via de Saída do Ventrículo Direito/cirurgia , Ecocardiografia , Estudos de Viabilidade , Comunicação Interventricular/cirurgia , Humanos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa