Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(10): 6896-900, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26393876

RESUMO

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)/Bi2Se3 and Fe/PTCDA/Bi2Se3 heterointerfaces are investigated using scanning tunneling microscopy and spectroscopy. The close-packed self-assembled PTCDA monolayer possesses big molecular band gap and weak molecule-substrate interactions, which leaves the Bi2Se3 topological surface state intact under PTCDA. Formation of Fe-PTCDA hybrids removes interactions between the Fe dopant and the Bi2Se3 surface, such as doping effects and Coulomb scattering. Our findings reveal the functionality of PTCDA to prevent dopant disturbances in the TSS and provide an effective alternative for interface designs of realistic TI devices.

2.
J Oral Implantol ; 38(6): 713-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20932126

RESUMO

The aim of this study was to determine the proximity of the nasopalatine canal (NPC) to the maxillary central incisor root (MCIR). The study included 120 cone beam computed tomography scans obtained from the Center for Implant Dentistry, Loma Linda University, between June 2006 and September 2009. They were equally distributed into six groups: (1) 21- to 40-year-old men, (2) 21- to 40-year-old women, (3) 41- to 60-year-old men, (4) 41- to 60-year-old women, (5) 61- to 80-year-old men, and (6) 61- to 80-year-old women. The closest distances between the NPC and the MCIR (NPC-to-MCIR) were measured at the midroot (bisecting palatal cementoenamel junction to root apex) and the apex levels. Differences between the groups were analyzed using a t test and 1-way analysis of variance at a significance level of α = .05. The overall mean NPC-to-MCIR distances at the midroot and apex levels were 3.05 ± 1.64 and 5.22 ± 1.56 mm, respectively. The modes of the NPC-to-MCIR distances at the midroot and apex levels were in the range of 1.01-2.00 mm and 4.01-5.00 mm, respectively. The mean NPC-to-MCIR distance was significantly greater in men than in women at the midroot level (P < .05) but not at the apex level (P > .05). The mean NPC-to-MCIR distance was significantly shorter for the youngest age group than the other two age groups at the midroot level (P < .05). However, at the apex level, the youngest age group had a significantly shorter distance compared with the oldest age group (P < .05) but not the middle age group (P > .05). The results of this study suggest that, to avoid NPC penetration, more care must be exercised during immediate implant placement at the midroot level of a maxillary central incisor in women and younger patients because of the root proximity to the NPC. Tapered implants may also be beneficial in such situations.


Assuntos
Maxila/anatomia & histologia , Nariz/anatomia & histologia , Palato Duro/anatomia & histologia , Raiz Dentária/diagnóstico por imagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Incisivo , Masculino , Maxila/diagnóstico por imagem , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
3.
Nanoscale Horiz ; 7(12): 1533-1539, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285561

RESUMO

The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.

4.
ACS Nano ; 15(9): 14822-14829, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436860

RESUMO

Twisted light carries a defined orbital angular momentum (OAM) that can enhance forbidden transitions in atoms and even semiconductors. Such attributes can possibly lead to enhancements of the material's photogenerated carriers through improved absorption of incident light photons. The interaction of twisted light and photovoltaic material is, thus, worth studying as more efficient photovoltaic cells are essential these days due to the need for reliable and sustainable energy sources. Two-dimensional (2D) MoS2, with its favorable optoelectronic properties, is a good platform to investigate the effects of twisted light on the photon absorption efficiency of the interacting material. This work, therefore, used twisted light as the exciting light source onto a MoS2 photovoltaic device. We observed that while incrementing the incident light's quantized OAM at fixed optical power, there are apparent improvements in the device's open-circuit voltage (VOC) and short-circuit current (ISC), implying enhancements of the photoresponse. We attribute these enhancements to the OAM of light that has facilitated improved optical absorption efficiency in MoS2. This study proposes a way of unlocking the potentials of 2D-MoS2 and envisions the employment of light's OAM for future energy device applications.

5.
Nanoscale Horiz ; 6(6): 462-467, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908543

RESUMO

All-optical switching of magnetic materials is a potential method for realizing high-efficiency and high-speed data writing in spintronics devices. The current method, which utilizes two circular helicities of light to manipulate magnetic domains, is based on femtosecond pulsed lasers. In this study, we demonstrate a new all-optical switching method using a continuous-wave Laguerre-Gaussian beam (twisted light), which allows photons to carry orbital angular momentum with discrete levels, lℏ, to modify the magnetic anisotropy of an interlayer exchange coupling system. The easy axis of the heterojunction Pt(5 nm)/Co(1.2 nm)/Ru(1.4 nm)/Co(0.4 nm)/Pt(5 nm) on a SiO2/Si substrate dramatically changed after illuminating it with a laser beam carrying a sufficient quantum number of orbital angular momentum. Based on a simple numerical calculation, we deduced that the interaction between the dynamical phase rotation of the electric field and the metal surface could generate an in-plane circular current loop that consequently induces a perpendicular stray field to change the magnetic anisotropy. This finding paves the way for developments in the field of magnetic-based spintronics using light with orbital angular momentum.

6.
ACS Nano ; 15(2): 3481-3489, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566571

RESUMO

Twisted light carries a well-defined orbital angular momentum (OAM) of lℏ per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied via experiments. In this work, photoluminescence (PL) spectroscopy studies of monolayer molybdenum disulfide (MoS2), a material with ultrastrong light-matter interaction due to reduced dimensionality, are carried out under photoexcitation of twisted light. It is observed that the measured spectral peak energy increases for every increment of l of the incident light. The nonlinear l-dependence of the spectral blue shifts is well accounted for by the analysis and computational simulation of this work. More excitingly, the twisted light excitation revealed the unusual lightlike exciton band dispersion of valley excitons in monolayer transition metal dichalcogenides. This linear exciton band dispersion is predicted by previous theoretical studies and evidenced via this work's experimental setup.

7.
Nanoscale Horiz ; 5(7): 1058-1064, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400801

RESUMO

Magnetic anisotropy (MA) is a material preference that involves magnetization aligned along a specific direction and provides a basis for spintronic devices. Here we report the first observation of strong MA in a cobalt-molybdenum disulfide (Co/MoS2) heterojunction. Element-specific magnetic images recorded with an X-ray photoemission electron microscope (PEEM) reveal that ultrathin Co films, of thickness 5 monolayers (ML) and above, form micrometer (µm)-sized domains on monolayer MoS2 flakes of size tens of µm. Image analysis shows that the magnetization of these Co domains is oriented not randomly but in directions apparently correlated with the crystal structure of the underlying MoS2. Evidence from micro-area X-ray photoelectron spectra (µ-XPS) further indicates that a small amount of charge is donated from cobalt to sulfur upon direct contact between Co and MoS2. As the ferromagnetic behavior found for Co/MoS2 is in sharp contrast with that reported earlier for non-reactive Fe/MoS2, we suggest that orbital hybridization at the interface is what makes Co/MoS2 different. Our report provides micro-magnetic and micro-spectral evidence that consolidates the knowledge required to build functional heterojunctions based on two-dimensional (2D) materials.

8.
ACS Nano ; 10(10): 9361-9369, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27660852

RESUMO

Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.

9.
J Oral Implantol ; 41(6): 632-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24552176

RESUMO

The purpose of this study is to use cone-beam computerized tomography (CBCT) scans with oblique-transverse reconstruction modality to measure and compare the anterior loop length (AnLL) of the mental nerve between gender and age groups and to compare the difference between the right and left sides. Sixty-one female and 61 male CBCT scans were randomly selected for each age group: 21-40, 41-60, and 61-80 years. Both right- and left-side AnLLs were measured in each subject using i-CATVision software to measure AnLLs on the oblique transverse plane using multiplanar reconstruction. The anterior loop was identified in 85.2% of cases, with the mean AnLL of the 366 subjects (732 hemimandibles) being 1.46 ± 1.25 mm with no statistically significant difference between right and left sides or between different gender groups. However, the mean AnLL in the 21-40 year group (1.89 ± 1.35 mm) was larger than the AnLL in the 41-60 year group (1.35 ± 1.19 mm) and the 61-80 year group (1.13 ± 1.08 mm). In conclusion, when placing implants in close proximity to mental foramina, caution is recommended to avoid injury to the inferior alveolar nerve. No fixed distance anteriorly from the mental foramen should be considered safe. Using CBCT scans with the oblique-transverse method to accurately identify and measure the AnLL is of utmost importance in avoiding and protecting its integrity.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Nervo Mandibular , Feminino , Humanos , Masculino , Mandíbula , Software
10.
ACS Nano ; 9(7): 7027-32, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26083646

RESUMO

Incorporating spin-polarized scanning tunneling microscopy (SP-STM) measurements and first-principles calculations, we resolve spin-polarized states and consequent features in a pentacene(PEN)-Co hybrid system. Symmetry reduction of PEN clarifies the PEN adsorption site and the Co stacking methods. Near the Fermi energy, the molecular symmetry is spin-dependently recovered and an inversion of spin-polarization in PEN with respect to Co is observed. The experimental findings and calculation results are interpreted by a pz-d hybridization model, in which spin-dependent bonding-antibonding splitting of molecular orbitals happens at metal-organic spinterfaces.

11.
Nat Commun ; 5: 4066, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898943

RESUMO

Surfaces of semiconductors with strong spin-orbit coupling are of great interest for use in spintronic devices exploiting the Rashba effect. BiTeI features large Rashba-type spin splitting in both valence and conduction bands. Either can be shifted towards the Fermi level by surface band bending induced by the two possible polar terminations, making Rashba spin-split electron or hole bands electronically accessible. Here we demonstrate the first real-space microscopic identification of each termination with a multi-technique experimental approach. Using spatially resolved tunnelling spectroscopy across the lateral boundary between the two terminations, a previously speculated on p-n junction-like discontinuity in electronic structure at the lateral boundary is confirmed experimentally. These findings realize an important step towards the exploitation of the unique behaviour of the Rashba semiconductor BiTeI for new device concepts in spintronics.

12.
ACS Nano ; 7(3): 2814-9, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23451803

RESUMO

Well-ordered metal-organic nanostructures of Fe-PTCDA (perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride) chains and networks are grown on a Au(111) surface. These structures are investigated by high-resolution scanning tunneling microscopy. Digitized frontier orbital shifts are followed in scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. A basic model is derived, which captures the essential underlying physics and correlates the observed energetic shift of the frontier orbital with the charge transfer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa