Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Vet Res ; 19(1): 169, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735392

RESUMO

BACKGROUND: Parvoviruses are icosahedral, nonenveloped viruses with single-stranded DNA genomes of approximately 5 kb in length. In recent years, parvoviruses have frequently mutated and expanded their host range to cause disease in many wild animals by altering their tissue tropism. Animal infection mainly results in acute enteritis and inflammation of other organs. In this study, we used a viral metagenomic method to detect a novel parvovirus species in a red-crowned crane that died due to severe diarrhea in China. RESULTS: The presence of the viral genome in the kidney, lung, heart, liver, and intestine were confirmed by PCR. Histopathological examination of the intestine showed a large number of infiltrated inflammatory cells. The JL21/10 strain of the red-crowned crane parvovirus was first isolated from the intestine. Whole-genome sequence analysis showed that JL21/10 shared high identity with the red-crowned crane Parvovirinae strains yc-8 at the nucleotide level (96.61%). Phylogenetic analysis of the complete genome and NS1 gene revealed that the JL21/10 strain clustered with strains in chicken and revealed a close genetic relationship with the red-crowned crane parvovirus strains.The complete of VP2 gene analysis showed that JL21/10 shared identity with the red-crowned crane yc-8 strains (97.7%), chicken (55.4%),ducks(31.0%) and geese(30.1%) at the amino acid level. The result showed that red-crowned crane parvovirus may be cross-species transmission to chicken. However, There is little possibility of transmission to ducks and geese. CONCLUSION: This is the first isolation and identification of a parvovirus in red-crowned crane that was associated with severe diarrhea.


Assuntos
Infecções por Parvoviridae , Parvovirus , Animais , Filogenia , Infecções por Parvoviridae/veterinária , Galinhas , Patos , Gansos , China , Diarreia/veterinária , Parvovirus/genética
2.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083350

RESUMO

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunidade Celular , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de DNA/genética
3.
Nature ; 524(7563): 93-6, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25970247

RESUMO

A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 × 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 × 10(-3) to 1.41 × 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.


Assuntos
Ebolavirus/genética , Evolução Molecular , Variação Genética/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Sequência de Bases , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/isolamento & purificação , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/transmissão , Humanos , Epidemiologia Molecular , Taxa de Mutação , Filogenia , Filogeografia , Serra Leoa/epidemiologia
4.
BMC Vet Res ; 14(1): 321, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367641

RESUMO

BACKGROUND: First identified in the United States in 2016, porcine circovirus type 3 (PCV3) is a newly emerging porcine circovirus exhibiting a wide range of clinical syndromes, which may be associated with the pathogenicity observed in pigs. RESULTS: The aim of this study was to identify and characterize the full genome sequence of PCV3 strains circulating in Northeast China. Herein, 105 lung samples isolated from sick pigs in Northeast China during 2018 were analyzed for PCV3. Using PCR, the total PCV3-positive rate was 33.3% (35/105), with rates of 17.8% (8/45), 66.7% (10/15), and 37.8% (17/45) in Heilongjiang, Jilin, and Liaoning province, respectively. Additionally, our findings showed that PCV3-positive samples had a high rate of co-infection with PCV2, PPV6, and PPV7. To study the evolution of the PCV3 in Northeast China, we sequenced the entire genome of 13 strains of PCV3. The results of phylogenetic analyses revealed that PCV3 could be divided into two clades, PCV3a and PCV3b. Interestingly, a G deletion at position 1072 was found in the 1999 nt genome of PCV3-CN2018LN-4 (MH277118). The G deletion terminated replicase protein translation and induced a truncated replicase protein. CONCLUSION: These results contribute to the understanding of PCV3 molecular epidemiology and evolution in Northeast China. A new strain of PCV3 with truncated replicase protein was identified.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Doenças dos Suínos/virologia , Animais , China/epidemiologia , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Genoma Viral/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia
5.
Clin Infect Dis ; 63(10): 1288-1294, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27553371

RESUMO

BACKGROUND: During 2014-2015, an outbreak of Ebola virus disease (EVD) swept across parts of West Africa. No approved antiviral drugs are available for Ebola treatment currently. METHODS: A retrospective clinical case series was performed for EVD patients in Sierra Leone-China Friendship Hospital. Patients with confirmed EVD were sequentially enrolled and treated with either World Health Organization (WHO)-recommended supportive therapy (control group) from 10 to 30 October, or treated with WHO-recommended therapy plus favipiravir (T-705) from 1 to 10 November 2014. Survival and virological characteristics were observed for 85 patients in the control group and 39 in the T-705 treatment group. RESULTS: The overall survival rate in the T-705 treatment group was higher than that of the control group (56.4% [22/39] vs 35.3% [30/85]; P = .027). Among the 35 patients who finished all designed endpoint observations, the survival rate in the T-705 treatment group (64.8% [11/17]) was higher than that of the control group (27.8% [5/18]). Furthermore, the average survival time of the treatment group (46.9 ± 5.6 days) was longer than that of the control group (28.9 ± 4.7 days). Most symptoms of patients in the treatment group improved significantly. Additionally, 52.9% of patients who received T-705 had a >100-fold viral load reduction, compared with only 16.7% of patients in the control group. CONCLUSIONS: Treatment of EVD with T-705 was associated with prolonged survival and markedly reduced viral load, which makes a compelling case for further randomized controlled trials of T-705 for treating EVD.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Ebolavirus , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/mortalidade , Pirazinas/uso terapêutico , Adolescente , Adulto , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Estudos Retrospectivos , Serra Leoa/epidemiologia , Carga Viral , Adulto Jovem
7.
Emerg Infect Dis ; 21(11): 1921-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26485317

RESUMO

During 2014-2015, an outbreak of Ebola virus disease (EVD) swept across parts of West Africa. The China Mobile Laboratory Testing Team was dispatched to support response efforts; during September 28-November 11, 2014, they conducted PCR testing on samples from 1,635 suspected EVD patients. Of those patients, 50.4% were positive, of whom 84.6% lived within a 3-km zone along main roads connecting rural towns and densely populated cities. The median time from symptom onset to testing was 5 days. At testing, 75.7% of the confirmed patients had fever, and 94.1% reported at least 1 gastrointestinal symptom; all symptoms, except rash and hemorrhage, were more frequent in confirmed than nonconfirmed patients. Virus loads were significantly higher in EVD patients with fever, diarrhea, fatigue, or headache. The case-fatality rate was lower among patients 15-44 years of age and with virus loads of <100,000 RNA copies/mL. These findings are key for optimizing EVD control and treatment measures.


Assuntos
Surtos de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/epidemiologia , Adolescente , Adulto , África Ocidental/epidemiologia , Criança , Pré-Escolar , Ebolavirus/genética , Feminino , Doença pelo Vírus Ebola/complicações , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Serra Leoa/epidemiologia , Adulto Jovem
8.
BMC Vet Res ; 10: 128, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916952

RESUMO

BACKGROUND: The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. RESULTS: To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN-γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. CONCLUSIONS: Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/sangue , Proliferação de Células , Quitosana , Genótipo , Interferon gama/sangue , Interleucina-2/sangue , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Saponinas de Quilaia , Linfócitos T/fisiologia , Vacinas de DNA/imunologia , Proteínas Virais/metabolismo
9.
Artigo em Chinês | MEDLINE | ID: mdl-24812834

RESUMO

OBJECTIVE: To clone and express Plasmodium falciparum erythrocyte membrane protein 1 DBLalpha (PfEMP1-DBLalpha) and three fragments genes, and screen the strongest affinity sequence with the red blood cell surface receptors-heparin or heparin sulfate in the structure of PfEMP1-DBLalpha. METHODS: The sequence of PfEMP1-DBLalpha1245 was optimized according to the characteristics of E. coli codon, synthesized, and divided into three fragments (DBLaA, DBLalphaB, and DBLalphaC) by PCR. Full-length gene and three gene fragments were subcloned into PGEX-4T-1 vector, and transformed into E. coli BL21 and then induced with IPTG for expression. The recombinant protein was purified from bacterial lysates using glutathione-Sepharose 4B. Heparin affinity test and glycosaminoglycan (GAG) inhibition test were used to analyze the affinity between recombinant protein and heparin. RESULTS: Four recombinant proteins(DBLalpha1245, DBLalphaA, DBLalphaB, and DBLalphaC) were expressed as solubility and the relative molecular weight (M(r) 73 600, M(r) 41 600, M(r) 42 500, and M(r) 41 500) were conformed to the prediction size. Heparin affinity test and GAG inhibition test showed that the four recombinant proteins were binded to the heparin-Sepharose, but not for the GST control. DBLalphaC (Q285-Y415) had the strongest affinity to heparin. CONCLUSION: The strongest affinity sequence with heparin or heparin sulfate in the structure of PfEMP1-DBLalpha is Q285-Y415, which plays a role in binding of Plasmodium falciparum infected red blood cells to the peripheral red blood cells.


Assuntos
Eritrócitos/parasitologia , Heparina/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Expressão Gênica , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Indian J Thorac Cardiovasc Surg ; 39(3): 293-295, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37124585

RESUMO

The sandwich stent technique is a commonly used method to preserve unilateral internal iliac artery flow when treating iliac artery aneurysm. In this case, covered stent grafts (Viabahn, Gore) were used to build the iliac limb of a sandwich stent. However, if Viabahn is released without long sheath protection, the trigger wire is easily wound on another stent, resulting in the Viabahn delivery system being inseparable from the stent. If we drag it forcefully, it would easily cause the entire sandwich stent graft to shift or even fall into the thoracic aorta. This complication is catastrophic. Here we report the case of a patient whose sandwich stent system disengaged and entered the thoracic aorta. We took corresponding measures to remedy it.

11.
Front Microbiol ; 14: 1309650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163077

RESUMO

Getah Virus (GETV) is an RNA virus that is transmitted by mosquitoes and can cause disease or death in a variety of vertebrates. Its prevalence is increasingly severe in Asia. This study conducted a GETV epidemiological investigation on 1,300 bovine sera collected in the Honghe Prefecture of Yunnan Province on the China-Myanmar border from 2022 to 2023. The positive rate of GETV antibodies in bovine serum in Honghe Prefecture was determined to be 20.25% through indirect Enzyme-linked immunosorbent test (ELISA) methods. Using Real-time PCR methods to detect GETV RNA in bovine serum, the positive rate was 0.23% (3/1300), and viral nucleic acids were only detected in three bovine sera in Jianshui area in 2022. The YN2305 strain was successfully isolated from mouse neuroblastoma (N2a) cells and the complete gene sequence was obtained. All the above results indicate the existence of GETV infection in cattle in Honghe Prefecture, Yunnan Province. Homology and genetic evolution analysis found that the isolated strain has a high homology with the JL1808 strain isolated from cattle in 2018, with a nucleotide identity of 100%, and a nucleotide identity of 99.8% with the SD17-09 strain isolated from foxes in 2017. Compared with the nucleotides of 44 virus strains published in Genbank, YN2305 has multiple nucleotide site mutations in the structural gene E2 and non-structural gene NS. The nucleotide and amino acid identity of the E2 gene are 94.2-100% and 96.4-100%, respectively. Genetic evolution analysis found that this virus strain is most closely related to the bovine origin JL1808, and it is in gene group III with HuN1, Kochi-01, SD17-09, MI-110-C1, and MI-110-C2 strains that causes significant clinical symptoms in Chinese pig, fox and horse populations, belonging to the same evolutionary branch. This study determined the infection rate, genotype, and main prevalence areas of GETV in bovine sera in the China-Myanmar border area. Therefore, the epidemiological investigation of GETV infection in multiple animal hosts should be further expanded, and research on its pathogenicity and vectors should be carried out.

12.
Front Immunol ; 14: 1196031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283741

RESUMO

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-ß and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-ß and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.


Assuntos
Alphacoronavirus , Coronavirus , Interferon Tipo I , Animais , Suínos , Alphacoronavirus/genética , Alphacoronavirus/metabolismo , Coronavirus/metabolismo , Endopeptidases , Interferon Tipo I/metabolismo
13.
Res Vet Sci ; 152: 212-218, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35998397

RESUMO

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS), which has caused huge economic losses to the pig industry worldwide. PRRSV NADC34-Like PRRSV 2020-Acheng-1 strain, which caused high morbidity and high mortality were isolated from dead piglets (high-throughput sequencing to show that only PRRSV and TGEV) on a farm in northeastern China. The full-length genome sequence of 2020-Acheng-1 shares 95.6% nucleotide homology with NADC34 PRRSV without any gene insertion, but has a unique 17 amino acid (469aa to 486aa) deletion in Nsp2 compared with all NADC34-Like strains in NCBI and there are unique 100 amino acid deletions. In addition, difference degree of changes in signal peptide, trans-membrane region (TM), main neutralizing epitope (PNE), non-neutralizing epitope and N-glycosylation site were observed in GP5 of 2020-Acheng-1 and other PRRSV-2 strains, we only found a change in the fifteenth amino acid of signal peptide of in GP5 of 2020-Acheng-1 with NADC34 strains. Recombination analysis showed that 2020-Acheng-1 strain did not have any recombination events with representative PRRSV-2 strains in China. This study provided valuable evidence for understanding the role of NADC34-Like strain that impact on pathogenicity.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Filogenia , Aminoácidos , Sinais Direcionadores de Proteínas/genética , Epitopos , China/epidemiologia , Variação Genética , Genoma Viral/genética
14.
Artigo em Chinês | MEDLINE | ID: mdl-21823322

RESUMO

OBJECTIVE: To clone and express three VAR2CSA duffy antigen-binding ligand (DBL) domains (DBL4/ 5/6) encoded by var2csa gene of a Hainan isolate of Plasmodium falciparum, and study the difference of chondroitin sulfate A (CSA)-binding activity among them. METHODS: Three DBL domains was amplified by PCR and cloned into the vector pMD18-T. The recombinant plasmids were identified by enzyme digestion and sequencing, and then subcloned into the prokaryotic expression vector pET-22b. The recombinant plasmid was transformed into E. coli BL21 (DE3) and followed by expression of the protein induced by IPTG. The recombinant protein was purified with His GraciTrap kit and identified by SDS-PAGE and Western blotting. CSA-binding activity of the three recombinant DBL domains was assayed by ELISA. RESULTS: The target genes were amplified with the length of 996 bp, 859 bp and 894 bp. The constructed recombinant plasmids were identified by enzyme digestion and DNA sequencing. The recombinant proteins (DBL4/5/6) were purified, the relative molecular mass of DBLfA, DBL5 and DBL6 was Mr 439 800, Mr 34,500 and Mr 36,000, respectively. The purified protein has been confirmed with immunogenicity by Western blotting. The results of adhesion experiment indicated that A405 values of DBL5 domain with different concentration were significantly higher than that of DBLA and DBL6. CONCLUSION: The three recombinant proteins (DBLA/5/6) of VAR2CSA DBL domains were expressed, and DBL5 domain has high binding affinity with CSA.


Assuntos
Antígenos de Protozoários/genética , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes/metabolismo , Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Clonagem Molecular , DNA de Protozoário/genética , Escherichia coli/metabolismo , Vetores Genéticos , Plasmodium falciparum/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/genética
15.
Front Immunol ; 12: 781718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868056

RESUMO

Norovirus (NoV) is a zoonotic virus that causes diarrhea in humans and animals. Outbreaks in nosocomial settings occur annually worldwide, endangering public health and causing serious social and economic burdens. The latter quarter of 2016 witnessed the emergence of the GII.P16-GII.2 recombinant norovirus throughout Asia. This genotype exhibits strong infectivity and replication characteristics, proposing its potential to initiate a pandemic. There is no vaccine against GII.P16-GII.2 recombinant norovirus, so it is necessary to design a preventive vaccine. In this study, GII.P16-GII.2 type norovirus virus-like particles (VLPs) were constructed using the baculovirus expression system and used to conduct immunizations in mice. After immunization of mice, mice were induced to produce memory T cells and specific antibodies, indicating that the VLPs induced specific cellular and humoral immune responses. Further experiments were then initiated to understand the underlying mechanisms involved in antigen presentation. Towards this, we established co-cultures between dendritic cells (DCs) or macrophages (Mø) and naïve CD4+T cells and simulated the antigen presentation process by incubation with VLPs. Thereafter, we detected changes in cell surface molecules, cytokines and related proteins. The results indicated that VLPs effectively promoted the phenotypic maturation of Mø but not DCs, as indicated by significant changes in the expression of MHC-II, costimulatory factors and related cytokines in Mø. Moreover, we found VLPs caused Mø to polarize to the M1 type and release inflammatory cytokines, thereby inducing naïve CD4+ T cells to perform Th1 immune responses. Therefore, this study reveals the mechanism of antigen presentation involving GII.P16-GII.2 recombinant norovirus VLPs, providing a theoretical basis for both understanding responses to norovirus infection as well as opportunities for vaccine development.


Assuntos
Infecções por Caliciviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Norovirus/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Apresentação de Antígeno , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Macrófagos/metabolismo , Camundongos , Norovirus/classificação , Norovirus/genética , Proteínas Recombinantes , Células Th1/metabolismo , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura
16.
Vet Microbiol ; 261: 109181, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34399297

RESUMO

The V protein of Newcastle disease virus (NDV) has been shown to inhibit the secretion of interferon (IFN) during infection, which is responsible for the promotion of NDV pathogenicity. However, the ability of the V protein to suppress host innate immunity is not well understood. In this study, we explored the function of V protein and its relationship with virulence by generating V protein-inserted recombinant (r) NDVs. Using rNDVs as a model, we examined the efficiency of infection, IFN responses, and apoptosis of host cells during infection. We found that viral propagation occurred smoothly when V protein from lentogenic NDV is inserted instead of the V protein from the velogenic strain. The infection of lentogenic V protein-inserted rNDV induced less expression of IFNs and downstream antiviral proteins via efficient degradation of p-STAT1 and MDA5. Moreover, velogenic V protein triggered a higher apoptosis rate during infection thereby restricting the replication of NDV. Conversely, lentogenic V protein inhibits IFN responses efficiently and induces less apoptosis compared to the velogenic strain. Our findings provide a novel understanding of the role of V protein in NDV pathogenicity.


Assuntos
Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Virais , Animais , Apoptose , Regulação da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Interferons/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
J Int Med Res ; 48(5): 300060520912104, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32393137

RESUMO

OBJECTIVE: To evaluate the feasibility, safety, and efficacy of an accurate kissing Viabahn stent technique to manage injuries near the innominate artery bifurcation. METHODS: This retrospective study included patients with injuries near the innominate artery bifurcation who were treated with an accurate kissing Viabahn stent technique. Perioperative and follow-up data were extracted and analysed. RESULTS: A total of 10 patients were included (mean age, 52.8 years; six male and four female patients) with injuries at the following sites: the distal end of the innominate artery (n = 2), the innominate artery bifurcation (n = 5), the root of the right common carotid artery (n = 2) and the origin of the right subclavian artery (n = 1). All were successfully treated with the accurate kissing Viabahn stent technique. During follow-up (mean duration, 16.8 months), there were no complications, such as right upper limb ischaemia, neurological dysfunction, stent occlusion or migration. CONCLUSIONS: The accurate kissing Viabahn stent technique to manage injuries near the bifurcation of the innominate artery was safe and effective, with good perioperative and long-term follow-up results.


Assuntos
Falso Aneurisma/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Dissecção Aórtica/cirurgia , Tronco Braquiocefálico/lesões , Procedimentos Endovasculares/métodos , Adulto , Idoso , Dissecção Aórtica/complicações , Dissecção Aórtica/diagnóstico , Falso Aneurisma/complicações , Falso Aneurisma/diagnóstico , Angiografia Digital , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/diagnóstico , Tronco Braquiocefálico/diagnóstico por imagem , Tronco Braquiocefálico/cirurgia , Angiografia por Tomografia Computadorizada , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/instrumentação , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Stents , Resultado do Tratamento
18.
Vector Borne Zoonotic Dis ; 20(10): 788-796, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32584657

RESUMO

Japanese encephalitis virus (JEV) is recognized as a public health risk by the World Health Organization. In Asia, each year, ∼70,000 people become infected with JEV, which results in ∼10,000 deaths. Chikungunya virus (CHIKV) is an RNA virus, whose infection mainly causes fever, myalgia, and skin rash. Although the mortality rate is low, it seriously affects daily life. JEV and CHIKV infect humans through mosquitoes; therefore, a recombinant vaccinia virus coexpressing JEV E and CHIKV E1 proteins was constructed to prevent their concurrent infection. In this study, after mice first immunization, booster immunization was performed at 21 days postimmunization (dpi). At 35 dpi, mice were challenged with JEV and CHIKV. Specific antibodies significantly increased in the rVTT-CE1-JE-EGFP group, which were significantly (p < 0.01) higher than those of the control groups at 35 dpi. The plaque reduction neutralization tests (JEV) of rVTT-CE1-JE-EGFP group was 1:320 at 35 dpi. Furthermore, cytokine levels and the percentage of CD3+CD4+ and CD3+CD8+ T-lymphocytes in the rVTT-CE1-JE-EGFP group were significantly (p < 0.01) higher than those in the control groups at 35 dpi. After challenge, mice body weights in rVTT-CE1-JE-EGFP group were not significantly altered, and the survival rate was 100%. These results showed the rVTT-CE1-JE-EGFP group elicited significant humoral and cellular immune responses, thus indicating that the recombinant vaccine may serve as a candidate for effective prevention of CHIKV and JEV infection.


Assuntos
Febre de Chikungunya/prevenção & controle , Encefalite Japonesa/prevenção & controle , Vacinas contra Encefalite Japonesa/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Animais , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Citocinas/sangue , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Feminino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Linfócitos T , Vaccinia virus/imunologia , Vacinas Virais/imunologia
19.
Transbound Emerg Dis ; 67(5): 2065-2072, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32187856

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and respiratory problems in piglets. PRRSV infection leads to substantial pig mortality and causing huge economic losses so that disease outbreaks caused by the new PRRSV strain from other regions have caused great concern in China. In this study, we analysed the pathogenicity of the novel ORF5 RFLP 1-7-4-like PRRSV strain, named PRRSV-ZDXYL-China-2018-1 in pigs. The viral challenge test showed that PRRSV-ZDXYL-China-2018-1 infection can cause persistent fever, moderate dyspnoea, serum viraemia and interstitial pneumonia in piglets. The levels of viral loads in serum and PRRSV-specific antigen were also detected in lung tissues were used one-step Taq-Man RT-qPCR and Immunohistochemistry, respectively. At 28dpi, the level of specific antibodies was increased among infected piglets. Importantly, the new virus appeared be a moderately virulent isolate with pathogenicity compared to HP-PRRSV strain LQ (JXA1-like strain). Histological examination revealed severe monocyte haemorrhage and interstitial pneumonia associated with monocyte infiltration in the lung tissue of pigs infected with PRRSV-ZDXYL-China-2018-1 and LQ-JXA1 strains. Immunohistochemistry (IHC) results showed positive brown-red epithelial cells and macrophages in pig lungs. Therefore, it is critical to establish an effective strategy to control the spread of PRRSV in China.

20.
Vet Microbiol ; 240: 108522, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902486

RESUMO

The porcine circovirus type 3 (PCV3) becomes an important causative agent of swine disease since its discovery in 2016. PCV3 infection exhibits a wide range of clinical syndromes causing substantial economic losses in swine industry. Previous studies have reported the detection of numerous known viruses including circovirus in mosquitoes. However, the transmission of PCV3 in field-caught mosquitoes remains largely unknown. This study aims to detect PCV3 infection in mosquitoes and analyze its genomic characteristics. Here, we performed a PCR to detect the PCV3 in 269 mosquito samples collected from pig farms located in Heilongjiang, Jilin, and Yunnan provinces. The proportion of PCV3-positive mosquitoes was 32.0 % (86/269), ranging from 21.4%-42.5% at farm level, which may imply that mosquito serves as a route of transmission for PCV3. To determine the possible origin of PCV3 in mosquitoes, 80 pig serum samples were collected from the pig farms where mosquito sampling was also performed. The proportion of PCV3-positive farms ranged from 15.0%-30.0 % in which infection of positive pigs positively correlated with mosquitoes carrying the virus. Additionally, we sequenced the entire genome of 6 strains of PCV3 in mosquitoes and 2 strains of PCV3 in pigs. Sequence analysis indicated a 100 % nucleotide similarity between mosquito and pig viral isolates that were all collected from similar farms. Phylogenetic analysis showed that PCV3 could be divided into two clades, PCV3a and PCV3b, and the PCV3 strains isolated in mosquitoes were distributed on the two clades. Our results demonstrate that mosquitoes may serve as a potential transmission vector in the life-cycle of PCV3, revealing possible transmission routes of PCV3.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Circovirus/isolamento & purificação , Culicidae/virologia , Genoma Viral , Doenças dos Suínos/transmissão , Animais , China , Infecções por Circoviridae/transmissão , Infecções por Circoviridae/virologia , Fazendas/estatística & dados numéricos , Genômica , Mosquitos Vetores/virologia , Filogenia , Suínos/virologia , Doenças dos Suínos/virologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa