RESUMO
Integrin-based focal adhesion is one of the major mechanosensory in osteocytes. The aim of this study was to mine the hub genes associated with focal adhesion and investigate their roles in osteoporosis based on the data of single-cell RNA sequencing and RNA-sequencing. Two hub genes (FAM129A and RNF24) with the same expression trend and AUC values greater than 0.7 in both GSE56815 and GSE56116 cohorts were uncovered. The nomogram was created to predict the risk of OP based on two hub genes. Subsequently, the competing endogenous RNA network was established based on two hub genes, 14 microRNAs and five long noncoding RNAs. Meanwhile, transcription factors-hub gene network was established based on two hub genes and 14 TFs. Finally, 73 drugs were predicted, of which there were 13 drugs targeting FAM129A and 66 drugs targeting RNF24. In both mouse and human blood samples, FAM129A expression was decreased in granulocytes and RNF24 expression was increased in monocytes. In the mouse experiment, FAM129A and anti-RNF24 were found to partially alleviate the progression of osteoporosis. In conclusion, two hub genes related to focal adhesion were identified by combined scRNA-seq and RNA-seq analyses, which might supply a new insight for the treatment and evaluation of OP.
Assuntos
MicroRNAs , Osteoporose , Humanos , Animais , Camundongos , RNA-Seq , Adesões Focais , Análise de Sequência de RNARESUMO
Cerebrospinal fluid (CSF) biomarkers are more sensitive than the Movement Disorder Society (MDS) criteria for detecting prodromal Parkinson's disease (PD). Early detection of PD provides the best chance for successful implementation of disease-modifying treatments, making it crucial to effectively identify CSF extracted from PD patients or normal individuals. In this study, an intelligent sensor array was built by using three metal-organic frameworks (MOFs) that exhibited varying catalytic kinetics after reacting with potential protein markers. Machine learning algorithms were used to process fingerprint response patterns, allowing for qualitative and quantitative assessment of the proteins. The results were robust and capable of discriminating between PD and non-PD patients via CSF detection. The k-nearest neighbor regression algorithm was used to predict MDS scores with a minimum mean square error of 38.88. The intelligent MOF sensor array is expected to promote the detection of CSF biomarkers due to its ability to identify multiple targets and could be used in conjunction with MDS criteria and other techniques to diagnose PD more sensitively and selectively.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Precoce , Algoritmos , Aprendizado de MáquinaRESUMO
Accurate determination of cerebral ascorbic acid (AA) is crucial for understanding ischemic stroke (IS) related pathological events. Carbon fiber microelectrodes (CFEs) have proven to be robust tools with high sensitivity toward AA, however, they face ongoing challenges for in situ measurement due to the non-specific adsorption of proteins in brain tissue. In this study, the hydrogen-bonded organic framework PFC-71 is synthesized and modified on CFEs through π-π stacking interactions with carboxylated carbon nanotubes (CNT-COOH). It is found that the gating effect and hydrophilicity of PFC-71 provided the CFE with excellent antibiofouling properties. As a result, AA exhibited a low oxidation potential of -30 mV on the CFE/CNT-COOH/PFC-71, even in the presence of 20 mg mL-1 bovine serum albumin. Given the structural advantages of CFE/CNT-COOH/PFC-71, a ratiometric electrochemical strategy for AA is established, enabling the in situ assay of cerebral AA in a middle cerebral artery occlusion (MCAO) model with high accuracy and stability.
RESUMO
BACKGROUND: α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES: This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS: Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS: The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS: Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Ácidos Cetoglutáricos , Lipopolissacarídeos , Mitocôndrias , Animais , Lipopolissacarídeos/toxicidade , Ácidos Cetoglutáricos/farmacologia , Suínos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Escherichia coli , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Dieta/veterinária , Intestinos/efeitos dos fármacosRESUMO
Napping during night shifts effectively reduces disease risk and improves work performance, but few studies have investigated the association between napping and physiological changes, particularly in off-duty daily lives. Changes in the autonomic nervous system precede diseases like cardiovascular disease, diabetes, and obesity. Heart rate variability is a good indicator of autonomic nervous system. This study aimed to investigate the link between night shift nap durations and heart rate variability indices in the daily lives of medical workers. As indicators of chronic and long-term alterations, the circadian patterns of heart rate variability indices were evaluated. We recruited 146 medical workers with regular night shifts and divided them into four groups based on their self-reported nap durations. Heart rate variability circadian parameters (midline-estimating statistic of rhythm, amplitude, and acrophase) were obtained by obtaining 24-h electrocardiogram on a day without night shifts, plotting the data of the heart rate variability indices as a function of time, and fitting them into periodic cosine curves. Using clinical scales, depression, anxiety, stress, fatigue, and sleepiness were assessed. Linear regression analysis revealed a positive relationship between 61-120-min naps and 24-h, daytime, and night-time heart rate variability indices, and the parasympathetic activity oscillation amplitude (indexed by high-frequency power, the square root of the mean of the sum of squares of differences between adjacent normal intervals, standard deviation of short-term R-R-interval variability) within one circadian cycle. This study indicated that napping for 61-120 min during night shifts could benefit medical workers' health, providing physiological evidence to promote nap management.
Assuntos
Ritmo Circadiano , Tolerância ao Trabalho Programado , Humanos , Ritmo Circadiano/fisiologia , Tolerância ao Trabalho Programado/fisiologia , Frequência Cardíaca/fisiologia , Vigília/fisiologia , Sistema Nervoso Autônomo , Sono/fisiologiaRESUMO
OBJECTIVE: Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3ß signaling pathway. METHODS: An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3ß signaling pathway. RESULTS: Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3ß signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION: P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3ß signaling pathway.
Assuntos
Reabsorção Óssea , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Feminino , Camundongos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Osteoclastos/metabolismo , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ligante RANK/metabolismo , Ligante RANK/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genéticaRESUMO
PURPOSE: Whether chronotype affects the health outcomes of night shift work populations is unknown. This study aimed to assess the influence of different chronotypes in the rotating night shift population on sleep status, mood, blood pressure (BP), and heart rate variability (HRV), as well as the circadian rhythm of BP and HRV. METHODS: A total of 208 rotating night shift workers were included. All participants completed structured questionnaires to assess chronotype, mood and sleep status. During their daily lives outside of the night shift, they underwent 24-hour Holter electrocardiogram monitoring and 24-hour ambulatory blood pressure monitoring. Day-time and night-time BP and BP dipping were obtained. Day-time and night-time HRV values (SDNN, RMSSD, LF, HF, LF nu, SD1, SD2 and SD2/SD1) were calculated and fitted to the cosine period curve. Three circandian parameters (mesor, amplitude and acrophase) were extracted to quantify the circadian rhythm of the HRV indices. RESULTS: Among all three groups, E-type showed more fatigue and sleepiness. In addition, E-type showed blunted diastolic BP dipping. Notably, E-type showed association with higher RMSSD, LF, HF and SD1 in the night time, and higher mesors of RMSSD and LF and amplitude of SD2/SD1 in circadian analysis. CONCLUSION: Chronotype is a factor affecting fatigue, sleepiness and cardiovascular circadian rhythms of rotating night shift workers. Chronotype should be taken into consideration for managing night-shift rotation to promote occupational health.
Assuntos
Monitorização Ambulatorial da Pressão Arterial , Cronotipo , Sindactilia , Humanos , Sonolência , Sono/fisiologia , Ritmo Circadiano/fisiologia , Fadiga , Tolerância ao Trabalho Programado/fisiologiaRESUMO
BACKGROUND: Health care workers (HCWs) frequently face multiple stressors at work, particularly those working night shifts. HCWs who have experienced distress may find it difficult to adopt stress management approaches, even if they are aware of the effects of stress and coping processes. Therefore, an individualized intervention may be required to assist distressed HCWs in bridging the "knowledge-practice" gap in stress management and effectively alleviating stress symptoms. OBJECTIVE: The main objective of this research was to compare the effects of a complex interactive multimodal intervention (CIMI) to self-guided stress management interventions on stress symptoms of distressed HCWs, as measured by physiological (heart rate variability), psychological (perceived stress, mental distress, and subjective happiness), and sleep disorder (fatigue and sleepiness) indicators. METHODS: We conducted a nonrandomized, controlled study in 2 Chinese general hospitals. The participants in this study were 245 HCWs who fulfilled at least 1 of the 3 dimensions on the Depression, Anxiety, and Stress Scale. All eligible individuals were required to complete a questionnaire and wear a 24-hour Holter device to determine the physiological signs of stress as indexed by heart rate variability at both baseline and after the intervention. The CIMI group received a 12-week online intervention with 4 components-mobile stress management instruction, a web-based WeChat social network, personalized feedback, and a nurse coach, whereas the control group simply received a self-guided intervention. RESULTS: After a 12-week intervention, the Perceived Stress Scale (PSS) scores reduced significantly in the CIMI group (mean difference [MD] -5.31, 95% CI -6.26 to -4.37; P<.001) compared to the baseline levels. The changes in PSS scores before and after the intervention exhibited a significant difference between the CIMI and control groups (d=-0.64; MD -4.03, 95% CI -5.91 to -2.14; P<.001), and the effect was medium. In terms of physiological measures, both the control group (MD -9.56, 95% CI -16.9 to -2.2; P=.01) and the CIMI group (MD -8.45, 95% CI -12.68 to -4.22; P<.001) demonstrated a significant decrease in the standard deviation of normal-to-normal intervals (SDNN) within the normal clinical range; however, there were no significant differences between the 2 groups (d=0.03; MD 1.11, 95% CI -7.38 to 9.59; P=.80). CONCLUSIONS: The CIMI was an effective intervention for improving sleep disorders, as well as parts of the psychological stress measures in distressed HCWs. The findings provide objective evidence for developing a mobile stress management intervention that is adaptable and accessible to distressed HCWs, but its long-term effects should be investigated in future research. TRIAL REGISTRATION: ClinicalTrials.gov NCT05239065; https://clinicaltrials.gov/ct2/show/NCT05239065.
Assuntos
Pessoal de Saúde , Humanos , China , Feminino , Masculino , Adulto , Pessoal de Saúde/psicologia , Estresse Psicológico/terapia , Estresse Psicológico/psicologia , Pessoa de Meia-Idade , Estresse Ocupacional/terapia , Estresse Ocupacional/psicologia , Frequência Cardíaca , Inquéritos e QuestionáriosRESUMO
Military personnel, firefighters, and fire survivors exhibit a higher prevalence of mental health conditions such as depression and post-traumatic stress disorder (PTSD) compared to the general population. While numerous studies have examined the neurological impacts of physical trauma and psychological stress, research on acute neurobehavioral effects of gas inhalation from explosions or fires is limited. This study investigates the early-stage neurobehavioral and neuronal consequences of acute explosion gas inhalation in Sprague-Dawley rats. Rats were exposed to simulated explosive gas and subsequently assessed using behavioral tests and neurobiological analyses. The high-dose exposure group demonstrated significant depression-like behaviors, including reduced mobility and exploration. However, neuronal damage was not evident in histological analyses. Immunofluorescence revealed increased density of radial glia and oligodendrocytes in specific brain regions, suggesting hypoxia and axon damage induced by gas inhalation as a potential mechanism for the observed neurobehavioral changes. These findings underscore the acute impact of explosion gas inhalation on mental health, highlighting the habenula and dentate gyrus of hippocampus as the possible target regions. The findings are expected to support early diagnosis and treatment strategies for brain injuries caused by explosion gas, offering insights into early intervention for depression and PTSD in affected populations.
Assuntos
Comportamento Animal , Explosões , Neuroglia , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Gases/toxicidade , Depressão/induzido quimicamenteRESUMO
This paper studies the adverse effect of air pollution on corporate research and development (R&D) and how sustainable development moderates this negative impact in emerging market economies (EMEs). Using a sample of 18 EMEs' firm-level data, the empirical results show that firms substantially reduce R&D expenses in the face of increasing air pollution, and this adverse effect becomes less pronounced with higher levels of sustainable development. Our analyses suggest that air pollution negatively affects R&D by increasing firms' difficulties in hiring highly skilled people or raising operation and production costs. Furthermore, we divide our sample firms into two groups according to some institutional quality factors related to sustainable development. The negative impact of air pollution on R&D is lower in countries with higher levels of institutional quality. Based on our research, to attract more R&D investment, EMEs should not only make an effort to manage air pollution but also invest more in human capital and improve their institutional quality to amplify the impact of their efforts.
Assuntos
Poluição do Ar , Desenvolvimento Sustentável , Humanos , Países em Desenvolvimento , PesquisaRESUMO
Daratumumab monotherapy demonstrated favorable safety and efficacy in relapsed/refractory multiple myeloma (RRMM) patients in the global phase 1/2 GEN501 and phase 2 SIRIUS studies. MMY1003 evaluated daratumumab monotherapy specifically in Chinese patients with RRMM. This 3-part, open-label, phase 1, dose-escalation study included patients with ≥ 2 prior lines of therapy. Part 3 included patients who had received a proteasome inhibitor (PI) and immunomodulatory drug (IMiD) and experienced disease progression on their last regimen. Patients received intravenous daratumumab 8 mg/kg or 16 mg/kg in part 1 and 16 mg/kg in parts 2 + 3. Primary endpoints were dose-limiting toxicity (DLT; part 1), pharmacokinetics (parts 1 + 2), and adverse events (AEs). Fifty patients enrolled. The first 3 patients in part 1 received daratumumab 8 mg/kg; remaining patients in parts 1-3 received daratumumab 16 mg/kg. In the daratumumab 16 mg/kg group (n = 47), patients received a median of 4 prior lines of therapy; 32% were refractory to a PI and IMiD, and 79% were refractory to their last prior therapy. No DLTs occurred. Thirty-six (77%) patients reported grade 3/4 treatment-emergent AEs. Thirteen (28%) patients experienced infusion-related reactions. At an 18.5-month median follow-up, overall response rate was 43%. Median progression-free survival (PFS) and overall survival (OS) were 6.7 months and not reached, respectively; 12-month PFS and OS rates were 35% and 70%. Pharmacokinetic results (n = 22) were consistent with other studies. Safety, pharmacokinetics, and efficacy of daratumumab monotherapy were confirmed in Chinese patients with RRMM. This trial is registered on ClinicalTrials.gov (NCT02852837).
Assuntos
Mieloma Múltiplo , Humanos , Anticorpos Monoclonais/uso terapêutico , Intervalo Livre de Progressão , China/epidemiologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dexametasona/uso terapêuticoRESUMO
Composite hemangioendothelioma (CHE) is a rare vascular tumor which shows varying combination of benign, low-grade, and malignant vascular components on pathology. CHE is usually located on the surface of the dermis and subcutaneous tissue of the extremities. We report an unusual case of CHE in the heart.
Assuntos
Calcinose , Neoplasias Cardíacas , Hemangioendotelioma , Mixoma , Neoplasias Vasculares , Calcinose/diagnóstico por imagem , Calcinose/cirurgia , Neoplasias Cardíacas/diagnóstico por imagem , Neoplasias Cardíacas/cirurgia , Hemangioendotelioma/diagnóstico , Hemangioendotelioma/patologia , Hemangioendotelioma/cirurgia , Humanos , Mixoma/diagnóstico por imagem , Mixoma/cirurgia , Neoplasias Vasculares/patologiaRESUMO
Circular RNAs (circRNAs) are involved in a variety of human diseases; however, the function of circRNAs in osteoarthritis (OA) remains largely unknown. In this study, we investigated the role of CircCDH13 in OA and its underlying mechanisms. CircRNA expression profiles in OA and normal cartilage tissues were detected by microarray. The expression pattern, functional role, and mechanisms of CircCDH13 in OA were studied in vitro and in vivo. Gain-of-function and loss-of-function approaches were used to demonstrate the participation of CircCDH13 in OA. The regulatory relationship between CircCDH13 and miR-296-3p and miR-296-3p and phosphatase and tensin homolog (PTEN) was predicted by bioinformatics and verified by RNA pulldown and luciferase assay. Adeno-associated virus was also used to reveal the role and mechanisms of CircCDH13 in destabilization of medial meniscus (DMM)-induced OA mice. The upregulation of CircCDH13 in OA cartilage tissues significantly induces chondrocyte apoptosis, promotes extracellular matrix (ECM) catabolism, and inhibits ECM anabolism. Mechanistically, CircCDH13 contributes to OA pathogenesis by functioning as a sponge of miR-296-3p and regulating the miR-296-3p-PTEN pathway. Silencing of CircCDH13 in vivo markedly alleviated DMM-induced OA in mice. Our study revealed an important role of CircCDH13 in OA pathogenesis. Silencing of CircCDH13 could reduce chondrocyte apoptosis, inhibit ECM catabolism, and promote ECM anabolism through the miR-296-3p-PTEN pathway. It provides a potential target for developing effective interventions in treating OA.
Assuntos
MicroRNAs/sangue , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/patologia , Apoptose/genética , Cartilagem Articular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Regulação para CimaRESUMO
The exact mechanism of tumour necrosis factor α (TNF-α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co-cultured with TNF-α to explore the effect of TNF-α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti-TNF-α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF-α at a concentration of 20 ng/mL up-regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti-TNF-α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency-induced osteoporosis.
Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoporose Pós-Menopausa/etiologia , Osteoporose Pós-Menopausa/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Biomarcadores , Retroversão Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoporose Pós-Menopausa/diagnóstico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Microtomografia por Raio-XRESUMO
Copper is an important trace element involved in several physiological processes. The deficiency or excess of Cu in the human body may cause some serious diseases. EDTA has been widely employed in many industry fields owing to its excellent chelating ability. The poor biodegradability of EDTA makes itself a persistent substance in the natural environment. This work provided a fluorescence "on-off-on" strategy for the sequential determination of trace Cu2+ and EDTA. Amino-functionalized graphene quantum dots (afGQDs) were synthetized via the thermal pyrolysis of citric acid. Fluorescence resonance energy transfer (FRET) between afGQDs and 1-(2-pyridylazo)-2-naphthol (PAN) effectively quenched the fluorescence of this carbon-based nanomaterial. The generation of the Cu2+-PAN complex caused the increased FRET efficiency and the further fluorescence decline. The change of the fluorescence intensity sensitively responded to copper ions. The linear range and the limit of detection (LOD) were 1 nM-10 µM and 0.87 nM, respectively. EDTA could decompose the Cu2+-PAN complex and liberate PAN, which weakened the FRET efficiency and led to the fluorescence recovery. The increasing degree of the fluorescence intensity was closely related to EDTA within a concentration range from 10 nM to 10 µM with a LOD at 4 nM. Copper ions in the water and human serum samples and EDTA in the trypsin-EDTA sample were successfully detected based on the proposed fluorescence method.
Assuntos
Cobre/análise , Ácido Edético/análise , Corantes Fluorescentes/química , Grafite/química , Pontos Quânticos/química , Fluorescência , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Íons/análise , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de SuperfícieRESUMO
Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1ß)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1ß-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy.
Assuntos
MicroRNAs/metabolismo , Osteoartrite/patologia , RNA Circular/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Imunofluorescência , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , RNA Circular/genéticaRESUMO
A one-pot method based on cyclic voltammetric scan was used to fabricate a glassy carbon electrode modified with nanocomposites consisting of poly(thionine) and amino-functionalized graphene quantum dots (afGQDs). Under near-neutral conditions, the dye polymer was effectively oxidized by hydroxyl radicals (·OH) that were derived from the copper-catalyzed Fenton-like reaction, and the cathodic peak current on the modified electrode greatly increased. The reaction of Cu2+ with thiourea (TU) and the generation of a complex, CuTU2+, led to the decrease of Cu2+/Cu+ species, which inhibited the Fenton-like reaction and reduced the electrochemical response change. Due to a displacement reaction, the addition of Hg2+ into the H2O2-Cu2+-TU system resulted in the release of cuprous ions that benefited the Fenton-like reaction. Under the following optimal conditions: 6 mg mL-1 afGQDs and the 25-cycle potential cycling for the fabrication of the modified electrode, pH 6.5, and the [Formula: see text] ratio of 1.0, the increasing extent of the cathodic peak current exhibited a good linear response to the logarithm of the Hg2+ concentration in the range of 1 pM-1 µM with a detection limit of 0.6 pM. Mercury ions in a water sample were determined with good recovery, ranging from 97 to 103%. The investigation on the uptake of Hg2+ into human vascular endothelial cells, HUVEC, shows that the cells incubated in the high-concentration glucose medium absorbed more mercury ions than HUVEC incubated in the normal medium. As a result, Hg2+ could lead to the greater damage to the former. Graphical abstract.
RESUMO
PURPOSE: The aim of this study was to investigate the effect of lumbar spine selective nerve root block (SNRB) experience on the learning efficiency of percutaneous endoscopic lumbar discectomy (PELD) for junior trainees. METHODS: A total of 480 patients undergoing single-level PELD performed by eight junior trainees were included. The trainees were divided into two groups based on whether they had previous SNRB experience (group A, yes; group B, no). Surgical proficiency was defined as total operation time less than 65 minutes and cumulative radiation exposure time no more than 40 seconds. The learning curve was analyzed by cumulative summation (CUSUM) test. Clinical evaluations included Macnab classification, visual analog scale (VAS)-low back score, VAS-leg score, and Oswestry Disability Index (ODI). Follow-up information at 12 months was also obtained. RESULTS: Integral number of cases before achieving an acceptable surgical level in group A (47.75 ± 2.50 cases) was significantly smaller than that in group B (56.50 ± 1.29 cases, p < 0.05), along with less accumulated failure (18.75 ± 0.96 cases vs. 25.50 ± 1.75 cases, p < 0.05). The two groups were comparable in clinical outcomes. Forty-seven cases of complications were observed, with 17 in group A and 30 in group B (p < 0.05). CONCLUSION: Previous experience of SNRB improved the performance of PELD with shorter operation time and less radiation exposure. SNRB practice may reduce the complication rate without a significant effect on the recurrence of symptoms and reoperation.
Assuntos
Discotomia Percutânea , Deslocamento do Disco Intervertebral , Discotomia/efeitos adversos , Endoscopia , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Curva de Aprendizado , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND: This study aimed to understand the disease characteristics and treatment outcomes of Crohn's disease (CD) in a real-world setting in China. METHODS: In this prospective, non-interventional, multicenter disease registry, adults (≥18 years) with existing and newly diagnosed CD were recruited from 14 medical centers across China from January 2015 to January 2017. The study consisted of the enrollment and follow-up periods, of 12 months each. Demographic, clinical characteristics, diagnostic duration and management of CD at enrollment were evaluated. Logistic regression analysis and stepwise multivariate logistic regression analysis used to assess the relationship between the risk factors and CD. RESULTS: Of 504 enrolled patients, 499 (99.0%) were eligible for analysis. The mean (SD) age at study enrollment was 32.3 (11.43) years and the majority (69.7%) of participants were male. In the past 15 years, a sustained decrease of the period of time in the diagnosis of CD was observed, at about 39.4 (24.11) months in 2010, which decreased to 3.1 (2.13) months in 2015. The most common presenting symptoms of CD included abdominal pain (78.0%), diarrhea (58.1%), weight loss (52.9%) and fever (30.1%). Oral ulcer (19.4%) and arthritis (9.8%) were the most common extra-intestinal manifestations. Non-stricturing non-penetrating (B1) (49.9%) behavior and ileocolonic involvement (L3) (56.2%) location were more frequent. Perianal disease was observed in 29.1% of the patients. Around 23.8% (119/499) patients had CD-related surgery other than perianal disease surgery. Older age at enrollment, longer disease course, complicated disease behavior and absence of perianal disease were all surgery risk factors (p < 0.05). The most common medications was immunomodulators (e.g., azathioprine) (41.5%), anti-TNFα agents (32.9%) and aminosalicylates (20.6%). The mean (SD) Crohn's Disease Active Index (CDAI) score was 159.1 (91.45) and almost half of the patients (49.1%, 81/165) were in remission. CONCLUSIONS: This study demonstrated the CD-disease characteristics, risk factors of CD-related surgery and perianal disease, and treatment strategies in a real-world setting in China and may help in developing programs to diagnose and manage patients with CD.
Assuntos
Doença de Crohn , Fatores Imunológicos/uso terapêutico , Administração dos Cuidados ao Paciente , Adulto , China/epidemiologia , Doença de Crohn/diagnóstico , Doença de Crohn/epidemiologia , Doença de Crohn/fisiopatologia , Doença de Crohn/terapia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação das Necessidades , Avaliação de Processos e Resultados em Cuidados de Saúde , Gravidade do Paciente , Administração dos Cuidados ao Paciente/métodos , Administração dos Cuidados ao Paciente/estatística & dados numéricos , Sistema de Registros/estatística & dados numéricos , Fatores de Risco , Tempo para o Tratamento/estatística & dados numéricosRESUMO
OBJECTIVE: To explore the association of membrane-associated guanylate kinase inverted 1 (MAGI1) with gastric cancer (GC) and the related molecular mechanisms. METHODS: The reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were utilized to measure the MAGI1 expression level in GC tissues. Quantitative real-time PCR and Western blotting were used to ensure the MAGI1 expression in GC cell lines. Small hairpin RNA (shRNA) was applied for knockdown of endogenous MAGI1 in GC cells. MTT assay and colony formation assay, scratch wounding migration assay and transwell chamber migration assay, as well as transwell chamber invasion assay were employed respectively to investigate the GC cell proliferation, migration and invasion in MAGI1-knockdown and control GC cells. The potential molecular mechanism mediated by MAGI1 was studied using Western blotting and RT- PCR. RESULTS: RT-PCR and IHC verified MAGI1 was frequently expressed in matched adjacent noncancerous mucosa compared with GC tissues and the expression of MAGI1 was related to clinical pathological parameters. Functional assays indicated that MAGI1 knockdown significantly promoted GC cell migration and invasion. Further mechanism investigation demonstrated that one pathway of MAGI1 inhibiting migration and invasion was mainly by altering the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT)-related molecules via inhibiting MAPK/ERK signaling pathway. CONCLUSIONS: MAGI1 was associated with GC clinical pathological parameters and acted as a tumor suppressor via inhibiting of MAPK/ERK signaling pathway in GC.