Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 66(21): 6877-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276865

RESUMO

In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress.


Assuntos
Trifosfato de Adenosina/biossíntese , Glycine max/fisiologia , Tolerância ao Sal , Sódio/metabolismo , Transporte de Elétrons , Células do Mesofilo/metabolismo , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Estresse Fisiológico , Vacúolos/metabolismo
2.
PLoS One ; 19(6): e0305133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935623

RESUMO

Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.


Assuntos
Alumínio , Clorofila , Fotossíntese , Complexo de Proteína do Fotossistema II , Rhododendron , Rhododendron/metabolismo , Alumínio/toxicidade , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Luz , Complexo de Proteína do Fotossistema I/metabolismo
3.
J Agric Food Chem ; 71(43): 15895-15907, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862148

RESUMO

Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.


Assuntos
Giberelinas , Melhoramento Vegetal , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas
4.
Planta ; 230(4): 599-610, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19557429

RESUMO

Cadmium (Cd) is toxic to crown roots (CR), which are essential for maintaining normal growth and development in rice seedlings. Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in plant root organogenesis. Here, the effects of Cd on endogenous NO content and root growth conditions were studied in rice seedlings. Results showed that similar to the NO scavenger, cPTIO, Cd significantly decreased endogenous NO content and CR number in rice seedlings, and these decreases were recoverable with the application of sodium nitroprusside (SNP, a NO donor). Microscopic analysis of root collars revealed that treatment with Cd and cPTIO inhibited CR primordia initiation. In contrast, although SNP partially recovered Cd-caused inhibition of CR elongation, treatment with cPTIO had no effect on CR elongation. L: -NMMA, a widely used nitric oxide synthase (NOS) inhibitor, decreased endogenous NO content and CR number significantly, while tungstate, a nitrate reductase (NR) inhibitor, had no effect on endogenous NO content and CR number. Moreover, enzyme activity assays indicated that treatment with SNP inhibited NOS activity significantly, but had no effect on NR activity. All these results support the conclusions that a critical endogenous NO concentration is indispensable for rice CR primordia initiation rather than elongation, NOS is the main source for endogenous NO generation, and Cd decreases CR number by inhibiting NOS activity and thus decreasing endogenous NO content in rice seedlings.


Assuntos
Cádmio/toxicidade , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Benzoatos/farmacologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Imidazóis/farmacologia , Nitrato Redutase/antagonistas & inibidores , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Nitroprussiato/farmacologia , Oryza/citologia , Oryza/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Compostos de Tungstênio/farmacologia , ômega-N-Metilarginina/farmacologia
5.
Ying Yong Sheng Tai Xue Bao ; 17(1): 118-22, 2006 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-16689246

RESUMO

Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.


Assuntos
Eucariotos/fisiologia , Metais Pesados , Poluentes Químicos da Água , Purificação da Água/métodos , Biodegradação Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa