Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072043

RESUMO

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinoma de Células Renais , Fator 3-beta Nuclear de Hepatócito , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Progressão da Doença
2.
Phys Rev Lett ; 132(10): 103201, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518314

RESUMO

We explored the collision-induced vibrational decoherence of singly ionized D_{2} molecules inside a helium nanodroplet. By using the pump-probe reaction microscopy with few-cycle laser pulses, we captured in real time the collision-induced ultrafast dissipation of vibrational nuclear wave packet dynamics of D_{2}^{+} ion embedded in the droplet. Because of the strong coupling of excited molecular cations with the surrounding solvent, the vibrational coherence of D_{2}^{+} in the droplet interior only lasts for a few vibrational periods and completely collapses within 140 fs. The observed ultrafast coherence loss is distinct from that of isolated D_{2}^{+} in the gas phase, where the vibrational coherence persists for a long time with periodic quantum revivals. Our findings underscore the crucial role of ultrafast collisional dissipation in shaping the molecular decoherence and solvation dynamics during solution chemical reactions, particularly when the solute molecules are predominantly in ionic states.

3.
Phys Rev Lett ; 132(3): 033201, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307062

RESUMO

Recent advances in laser technology have enabled tremendous progress in light-induced molecular reactions, at the heart of which the breaking and formation of chemical bonds are located. Such progress has been greatly facilitated by the development of an accurate quantum-mechanical simulation method, which, however, does not necessarily accompany clear dynamical scenarios and is rather computationally heavy. Here, we develop a wave-packet surface propagation (WASP) approach to describe the molecular bond-breaking dynamics from a hybrid quantum-classical perspective. Via the introduction of quantum elements including state transitions and phase accumulations to the Newtonian propagation of the nuclear wave packet, the WASP approach naturally comes with intuitive physical scenarios and accuracies. It is carefully benchmarked with the H_{2}^{+} molecule and is shown to be capable of precisely reproducing experimental observations. The WASP method is promising for the intuitive visualization of light-induced molecular dynamics and is straightforward extensible towards complex molecules.

4.
J Phys Chem A ; 128(2): 401-412, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38181198

RESUMO

An ultrafast intense laser field is one of the most important tools to observe and manipulate electronic and nuclear dynamics with subcycle precision in highly nonlinear light-matter interactions, which provides access to attosecond chemistry and physics. In this review, we briefly summarize the protocol of attosecond chronoscopy and its application in probing the attosecond photoemission dynamics from atoms and molecules. We also review the control schemes of attosecond electron motion in atoms and molecules as well as molecular bond formation and cleavage with the assistance of tailored femtosecond laser fields.

5.
Opt Express ; 31(16): 25467-25476, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710432

RESUMO

Driven by intense laser fields, the outgoing photoelectrons in molecules possess a quiver motion, resulting in the rise of the effective ionization potential. The coupling of the field-dressed ionization potential with abundant molecular dynamics complicates the laser-molecule interactions. Here, we demonstrate an approach to resolve photoelectron releasing order in the dissociative and non-dissociative channels of multiphoton ionization driven by an orthogonally polarized two-color femtosecond laser pulse. The photoelectron kinetic energy releases and the regular nodes in the photoelectron angular distributions due to the participation of different continuum partial waves allow us to deduce the field-dressed ionization potential of various channels. It returns the ponderomotive energy experienced by the outgoing electron and reveals the corresponding photoionization instants within the laser pulse. Our results provide a route to explore the complex strong-field ionization dynamics of molecules using two-dimensional photoelectron momentum spectroscopy.

6.
Phys Rev Lett ; 130(3): 033201, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763404

RESUMO

We investigate the above-threshold multiphoton ionization of H_{2} embedded in superfluid He nanodroplets driven by ultraviolet femtosecond laser pulses. We find that the surrounding He atoms enhance the dissociation of in-droplet H_{2}^{+} from lower vibrational states as compared to that of isolated gas-phase molecules. As a result, the discrete peaks in the photoelectron energy spectrum correlated with the HHe^{+} from the dissociative in-droplet molecule shift to higher energies. Based on the electron-nuclear correlation, the photoelectrons with higher energies are correlated to the nuclei of the low-vibrationally excited molecular ion as the nuclei share less photon energy. Our time-dependent nuclear wave packet quantum simulation using a simplified He-H_{2}^{+} system confirms the joint contribution of the driving laser field and the neighboring He atoms to the dissociation dynamics of the solute molecular ion. The results strengthen our understanding of the role of the environment on light-induced ultrafast dynamics of molecules.

7.
Phys Rev Lett ; 130(14): 143203, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084425

RESUMO

We demonstrate that dissociative ionization of H_{2} can be fully manipulated in an angle-time-resolved fashion, employing a polarization-skewed (PS) laser pulse in which the polarization vector rotates. The leading and falling edges of the PS laser pulse, characterized by unfolded field polarization, trigger, sequentially, parallel and perpendicular transitions of stretching H_{2} molecules, respectively. These transitions result in counterintuitive proton ejections that deviate significantly from the laser polarization directions. Our findings demonstrate that the reaction pathways can be controlled through fine-tuning the time-dependent polarization of the PS laser pulse. The experimental results are well reproduced using an intuitive wave-packet surface propagation simulation method. This research highlights the potential of PS laser pulses as powerful tweezers to resolve and manipulate complex laser-molecule interactions.

8.
Phys Rev Lett ; 131(20): 203201, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039486

RESUMO

Multiphoton light-matter interactions invoke a so-called "black box" in which the experimental observations contain the quantum interference between multiple pathways. Here, we employ polarization-controlled attosecond photoelectron metrology with a partial wave manipulator to deduce the pathway interference within this quantum 'black box" for the two-photon ionization of neon atoms. The angle-dependent and attosecond time-resolved photoelectron spectra are measured across a broad energy range. Two-photon phase shifts for each partial wave are reconstructed through the comprehensive analysis of these photoelectron spectra. We resolve the quantum interference between the degenerate p→d→p and p→s→p two-photon ionization pathways, in agreement with our theoretical simulations. Our approach thus provides an attosecond time-resolved microscope to look inside the "black box" of pathway interference in ultrafast dynamics of atoms, molecules, and condensed matter.

9.
J Chem Phys ; 158(9): 094302, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889967

RESUMO

We experimentally studied the three-body fragmentation dynamics of a noble gas cluster (ArKr2) upon its multiple ionization by an intense femtosecond laser pulse. The three-dimensional momentum vectors of correlated fragmental ions were measured in coincidence for each fragmentation event. A novel comet-like structure was observed in the Newton diagram of the quadruple-ionization-induced breakup channel of ArKr2 4+→ Ar+ + Kr+ + Kr2+. The concentrated head part of the structure mainly originates from the direct Coulomb explosion process, while the broader tail part of the structure stems from a three-body fragmentation process involving electron transfer between the distant Kr+ and Kr2+ ion fragments. Due to the field-driven electron transfer, the Coulomb repulsive force of the Kr2+ and Kr+ ions with respect to the Ar+ ion undergoes exchange, leading to changes in the ion emission geometry in the Newton plot. An energy sharing among the separating Kr2+ and Kr+ entities was observed. Our study indicates a promising approach for investigating the strong-field-driven intersystem electron transfer dynamics by using the Coulomb explosion imaging of an isosceles triangle van der Waals cluster system.

10.
Nucleic Acids Res ; 49(17): 9711-9723, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379783

RESUMO

Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and ß-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult ß-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hemoglobina Fetal/genética , Inativação Gênica , Proteínas de Ligação a RNA/metabolismo , gama-Globinas/genética , Animais , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Humanos , Células K562 , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Fatores de Transcrição SOXD/metabolismo , gama-Globinas/biossíntese
11.
Phys Rev Lett ; 129(17): 173201, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332237

RESUMO

Attosecond time-resolved electron tunneling dynamics have been investigated by using attosecond angular streaking spectroscopy, where a clock reference to the laser field vector is required in atomic strong-field ionization and the situation becomes complicated in molecules. Here we reveal a resonant ionization process via a transient state by developing an electron-tunneling-site-resolved molecular attoclock in Ar-Kr^{+}. Two distinct deflection angles are observed in the photoelectron angular distribution in the molecular frame, corresponding to the direct and resonant ionization pathways. We find the electron is temporally trapped in the Coulomb potential wells of the Ar-Kr^{+} before finally releasing into the continuum when the electron tunnels through the internal barrier. By utilizing the direct tunneling ionization as a self-referenced arm of the attoclock, the time delay of the electron trapped in the resonant state is revealed to be 3.50±0.04 fs. Our results give an impetus to exploring the ultrafast electron dynamics in complex systems and also endow a semiclassical presentation of the electron trapping dynamics in a quantum resonant state.

12.
Phys Rev Lett ; 128(24): 243201, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776471

RESUMO

Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.

13.
Phys Rev Lett ; 127(18): 183201, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767394

RESUMO

Probing transient charge localization in the innershell orbital of atoms and molecules has been made possible by the recent progress of advanced light sources. Here, we demonstrate that the ultrafast electron tunneling ionization by an intense femtosecond laser pulse could induce an asymmetric transient charge localization in the valence shell of the HCl molecule during the dissociative ionization process. The transient charge localization is encoded in the laser impulse acquired by the outgoing ionic fragments, and the asymmetry is revealed by carefully examining the electron tunneling-site distinguished momentum angular distribution of the ejected H^{+} fragments. Our work proposes a way to visualize the transient valence charge motion and will stimulate further investigations of the tunneling-site-sensitive ultrafast dynamics of molecules in strong laser fields.

14.
Phys Rev Lett ; 126(6): 063201, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635700

RESUMO

The dissociative above-threshold double ionization (ATDI) of H_{2} in strong laser fields involves the sequential releasing of two electrons at specific instants with the stretching of the molecular bond. By mapping the releasing instants of two electrons to their emission directions in a multicycle polarization-skewed femtosecond laser pulse, we experimentally clock the dissociative ATDI of H_{2} via distinct photon-number-resolved pathways, which are distinguished in the kinetic energy release spectrum of two protons measured in coincidence. The timings of the experimentally resolved dissociative ATDI pathways are in good accordance with the classical predictions. Our results verify the multiphoton scenario of the dissociative ATDI of H_{2} in both time and energy fashion, strengthening the understanding of the strong-field phenomenon and providing a robust tool with a subcycle time resolution to clock abundant ultrafast dynamics of molecules.

15.
Proc Natl Acad Sci U S A ; 115(9): 2049-2053, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440495

RESUMO

Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

16.
Am J Pathol ; 189(5): 1105-1120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30862482

RESUMO

Mitochondrial ribosome proteins (MRPs), which are encoded by the nuclear genomic DNA, are important for mitochondrial-encoded protein synthesis and mitochondrial function. Emerging evidence suggests that several MRPs also exhibit important extra-mitochondrial functions, such as involvement in apoptosis, protein biosynthesis, and signal transduction. In this study, we demonstrate a significant role of MRP L35 (MRPL35) in colorectal cancer (CRC). The expression of MRPL35 was higher in CRC tissues than in matched cancer-adjacent tissues and higher in CRC cells than in normal mucosal epithelial cells. Higher MRPL35 expression in CRC tissue correlated with shorter overall survival for CRC patients. In vitro, down-regulation of MRPL35 led to increased production of reactive oxygen species (ROS) together with DNA damage, loss of cell proliferation, G2/M arrest, a decrease in mitochondrial membrane potential, apoptosis, and autophagy induction. MRPL35 knockdown inhibited tumor proliferation in a CRC xenograft nude mouse model. Furthermore, overexpression of MRPL35 or treatment of cells with the ROS scavenger, N-acetyl cysteine, abrogated ROS production, cell cycle arrest, and apoptosis in vitro. These findings suggest that MRPL35 plays an essential role in the development of CRC and may be a potential therapeutic target for CRC.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Biomarcadores Tumorais/genética , Ciclo Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Mitocondriais/genética , Prognóstico , Proteínas Ribossômicas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Phys Rev Lett ; 125(5): 053201, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794853

RESUMO

A fine manipulation of population transfer among molecular quantum levels is a key technology for control of molecular processes. When a light field intensity is increased to the TW-PW cm^{-2} level, it becomes possible to transfer a population to specific excited levels through nonlinear light-molecule interaction, but it has been a challenge to control the extent of the population transfer. We deplete the population in the X^{2}Σ_{g}^{+}(v=0) state of N_{2}^{+} almost completely by focusing a dual-color (800 nm and 1.6 µm) intense femtosecond laser pulse in a nitrogen gas, and make the intensity of N_{2}^{+} lasing at 391 nm enhanced by 5-6 orders of magnitude. By solving a time-dependent Schrödinger equation describing the population transfer among the three lowest electronic states of N_{2}^{+}, we reveal that the X^{2}Σ_{g}^{+}(v=0) population is depleted by the vibrational Raman excitation followed by the electronic excitation A^{2}Π_{u}(v=2,3,4)←X^{2}Σ_{g}^{+}(v=1)←X^{2}Σ_{g}^{+}(v=0), resulting in the excessive population inversion between the B^{2}Σ_{u}^{+}(v=0) and X^{2}Σ_{g}^{+}(v=0) states. Our results offer a promising route to efficient population transfer among vibrational and electronic levels of molecules by a precisely designed intense laser field.

18.
Phys Rev Lett ; 123(23): 233202, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868470

RESUMO

We experimentally observe the bond stretching time of one-photon and net-two-photon dissociation pathways of singly ionized H_{2} molecules driven by a polarization-skewed femtosecond laser pulse. By measuring the angular distributions of the ejected photoelectron and nuclear fragments in coincidence, the cycle-changing polarization of the laser field enables us to clock the photon-ionization starting time and photon-dissociation stopping time, analogous to a stopwatch. After the single ionization of H_{2}, our results show that the produced H_{2}^{+} takes almost the same time in the one-photon and net-two-photon dissociation pathways to stretch to the internuclear distance of the one-photon coupled dipole-transition between the ground and excited electronic states. The spatiotemporal mapping character of the polarization-skewed laser field provides us a straightforward route to clock the ultrafast dynamics of molecules with sub-optical-cycle time resolution.

19.
Opt Express ; 25(3): 2221-2227, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519070

RESUMO

The dissociative ionization of CO in orthogonally polarized femtosecond laser pulses are studied in a pump-probe scheme. The ionization of CO by the pump pulse and the dissociation of the created CO+ by the probe pulse can be fully disentangled by identifying the photoelectron momentum distributions. Different from the dissociative ionization by a single pulse in which the CO molecule mostly breaks along the field polarization, in this pump-probe strategy, the CO+ ion created from ionization by the pump pulse is favored to dissociate when it orients orthogonal to the polarization direction of the probe pulse. It is attributed to the laser-coupling of various electronic states of the molecular ion in the dissociation process, supported by the numerical simulation of a modeled time-dependent Schrödinger equation.

20.
Opt Express ; 25(21): 24917-24926, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041165

RESUMO

We report experimental observations of rotated echoes of alignment induced by a pair of time-delayed and polarization-skewed femtosecond laser pulses interacting with an ensemble of molecular rotors. Rotated fractional echoes, rotated high order echoes and rotated imaginary echoes are directly visualized by using the technique of coincident Coulomb explosion imaging. We show that the echo phenomenon not only exhibits temporal recurrences but also spatial rotations determined by the polarization of the time-delayed second pulse. The dynamics of echo formation is well described by the laser-induced filamentation in rotational phase space. The quantum-mechanical simulation shows good agreements with the experimental results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa