Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 146(34): 24167-24176, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39162130

RESUMO

Redox-active transition metal oxides (TMOs) play crucial roles in diverse energy storage and conversion technologies, such as batteries and pseudocapacitors. These materials show intricate electrochemical charge storage processes, encompassing both bulk ion-intercalation, typical of battery electrodes, and pseudocapacitive-like behavior localized near the surfaces. However, understanding the underlying mechanisms of charge storage in redox-active TMOs is challenging due to the coexistence of these behaviors. In this study, we propose an integrated approach that combines operando electrochemical and optical techniques to disentangle the contributions of bulk and surface phenomena. Using birnessite δ-MnO2-x as a model system, we account for surface pseudocapacitive-like layers and employ a refined model that incorporates both surface reactions and bulk chemical diffusion. This methodology allows us to extract essential kinetic parameters, establishing a fundamental framework for unraveling surface and bulk electrochemical processes. This advancement provides a valuable tool for the rational design of energy storage devices, enhancing our ability to tailor these materials for specific applications.

2.
J Am Chem Soc ; 145(47): 25806-25814, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971728

RESUMO

Triggering phase transitions by controlling the anion stoichiometry is an effective method of tuning the electrocatalytic activity of the functional oxides. However, understanding the potential differences in the reaction mechanism(s) of different phases requires the accurate mapping of phase boundaries during the electrochemical reactions, which can be quite challenging. In this work, we have established a feasible electrochemical method based on the measurement of chemical capacitance to resolve the critical stoichiometry at phase boundaries under operando conditions. We select a simple binary oxide PrOx as a proof-of-principle model system, which shows excellent activity for high-temperature oxygen incorporation and evolution reactions (OIR/OER). We show that the phase transition can be sensitively probed by quantifying the chemical capacitance, which can be further used for differentiating the OIR/OER mechanisms across the phase boundary of PrOx. Therefore, our findings provide a new framework for exploring phase engineering as a tool for the design of electrocatalysts.

3.
Phys Rev Lett ; 131(25): 256801, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181338

RESUMO

Ferroelectrics and ionic conductors are important functional materials, each supporting a plethora of applications in information and energy technology. The underlying physics governing their functional properties is ionic motion, and yet studies of ferroelectrics and ionic conductors are often considered separate fields. Based on first-principles calculations and deep-learning-assisted large-scale molecular dynamics simulations, we report ferroelectric-switching-promoted oxygen ion transport in HfO_{2}, a wide-band-gap insulator with both ferroelectricity and ionic conductivity. Applying a unidirectional bias can activate multiple switching pathways in ferroelectric HfO_{2}, leading to polar-antipolar phase cycling that appears to contradict classical electrodynamics. This apparent conflict is resolved by the geometric-quantum-phase nature of electric polarization that carries no definite direction. Our molecular dynamics simulations demonstrate bias-driven successive ferroelectric transitions facilitate ultrahigh oxygen ion mobility at moderate temperatures, highlighting the potential of combining ferroelectricity and ionic conductivity for the development of advanced materials and technologies.

4.
Nano Lett ; 22(22): 8983-8990, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331193

RESUMO

Protonation can be used to tune diverse physical and chemical properties of functional oxides. Although protonation of nickelate perovskites has been reported, details on the crystal structure of the protonated phase and a quantitative understanding of the effect of protons on physical properties are still lacking. Therefore, in this work, we select NdNiO3 (NNO) as a model system to understand the protonation process from pristine NNO to protonated HxNdNiO3 (H-NNO). We used a reliable electrochemical method with well-defined reference electrode to trigger the protonation-induced phase transition. We found that the protonated H-NNO phase showed a colossal ∼13% lattice expansion caused by a large tilt of NiO6 octahedra and displacement of Nd cations. Importantly, we further designed a novel device configuration to induce a gradient of proton concentration into a single NNO thin film to establish a quantitative correlation between the proton concentration and the lattice constant and transport property of H-NNO.

5.
Nat Mater ; 20(5): 674-682, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33432142

RESUMO

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

6.
Faraday Discuss ; 236(0): 141-156, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543196

RESUMO

Nanoparticle formation by dopant exsolution (migration) from bulk host lattices is a promising approach to generate highly stable nanoparticles with tunable size, shape, and distribution. We investigated Ni dopant migration from strontium titanate (STO) lattices, forming metallic Ni nanoparticles at STO surfaces. Ex situ scanning probe measurements confirmed the presence of nanoparticles at the H2 treated surface. In situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) revealed reduction from Ni2+ to Ni0 as Ni dopants migrated to the surface during heating treatments in H2. During Ni migration and reduction, the Sr and Ti chemical states were mostly unchanged, indicating the selective reduction of Ni during treatment. At the same time, we used in situ ambient pressure grazing incidence X-ray scattering (GIXS) to monitor the particle morphology. As Ni migrated to the surface, it nucleated and grew into compressed spheroidal nanoparticles partially embedded in the STO perovskite surface. These findings provide a detailed picture of the evolution of the nanoparticle surface and subsurface chemical state and morphology as the nanoparticles grow beyond the initial nucleation and growth stages.

7.
Nat Mater ; 19(6): 655-662, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32094497

RESUMO

Unlike the wide-ranging dynamic control of electrical conductivity, there does not exist an analogous ability to tune thermal conductivity by means of electric potential. The traditional picture assumes that atoms inserted into a material's lattice act purely as a source of scattering for thermal carriers, which can only reduce thermal conductivity. In contrast, here we show that the electrochemical control of oxygen and proton concentration in an oxide provides a new ability to bi-directionally control thermal conductivity. On electrochemically oxygenating the brownmillerite SrCoO2.5 to the perovskite SrCoO3-δ, the thermal conductivity increases by a factor of 2.5, whereas protonating it to form hydrogenated SrCoO2.5 effectively reduces the thermal conductivity by a factor of four. This bi-directional tuning of thermal conductivity across a nearly 10 ± 4-fold range at room temperature is achieved by using ionic liquid gating to trigger the 'tri-state' phase transitions in a single device. We elucidated the effects of these anionic and cationic species, and the resultant changes in lattice constants and lattice symmetry on thermal conductivity by combining chemical and structural information from X-ray absorption spectroscopy with thermoreflectance thermal conductivity measurements and ab initio calculations. This ability to control multiple ion types, multiple phase transitions and electronic conductivity that spans metallic through to insulating behaviour in oxides by electrical means provides a new framework for tuning thermal transport over a wide range.

8.
Proc Natl Acad Sci U S A ; 115(39): 9672-9677, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30104357

RESUMO

Solid-state ion shuttles are of broad interest in electrochemical devices, nonvolatile memory, neuromorphic computing, and biomimicry utilizing synthetic membranes. Traditional design approaches are primarily based on substitutional doping of dissimilar valent cations in a solid lattice, which has inherent limits on dopant concentration and thereby ionic conductivity. Here, we demonstrate perovskite nickelates as Li-ion shuttles with simultaneous suppression of electronic transport via Mott transition. Electrochemically lithiated SmNiO3 (Li-SNO) contains a large amount of mobile Li+ located in interstitial sites of the perovskite approaching one dopant ion per unit cell. A significant lattice expansion associated with interstitial doping allows for fast Li+ conduction with reduced activation energy. We further present a generalization of this approach with results on other rare-earth perovskite nickelates as well as dopants such as Na+ The results highlight the potential of quantum materials and emergent physics in design of ion conductors.

9.
Nat Mater ; 15(9): 1010-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27295099

RESUMO

Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

10.
Nano Lett ; 16(2): 1186-93, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26691638

RESUMO

Topotactic phase transition of functional oxides induced by changes in oxygen nonstoichiometry can largely alter multiple physical and chemical properties, including electrical conductivity, magnetic state, oxygen diffusivity, and electrocatalytic reactivity. For tuning these properties reversibly, feasible means to control oxygen nonstoichiometry-dependent phase transitions in functional oxides are needed. This paper describes the use of electrochemical potential to induce phase transition in strontium cobaltites, SrCoOx (SCO) between the brownmillerite (BM) phase, SrCoO2.5, and the perovskite (P) phase, SrCoO3₋δ. To monitor the structural evolution of SCO, in situ X-ray diffraction (XRD) was performed on an electrochemical cell having (001) oriented thin-film SrCoOx as the working electrode on a single crystal (001) yttria-stabilized zirconia electrolyte in air. In order to change the effective pO2 in SCO and trigger the phase transition from BM to P, external electrical biases of up to 200 mV were applied across the SCO film. The phase transition from BM to P phase could be triggered at a bias as low as 30 mV, corresponding to an effective pO2 of 1 atm at 500 °C. The phase transition was fully reversible and the epitaxial film quality was maintained after reversible phase transitions. These results demonstrate the use of electrical bias to obtain fast and easily accessible switching between different phases as well as distinct physical and chemical properties of functional oxides as exemplified here for SCO.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa