Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell Mol Life Sci ; 81(1): 108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421455

RESUMO

Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.


Assuntos
Infertilidade Masculina , Testículo , Humanos , Feminino , Masculino , Animais , Camundongos , Sêmen , Espermatogênese/genética , Infertilidade Masculina/genética , Interações Espermatozoide-Óvulo , Mamíferos , Fertilinas
2.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832955

RESUMO

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Microambiente Tumoral
3.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028541

RESUMO

A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for sperm migration from the uterus into the oviduct and sperm-egg binding in mice. Disruption of PRSS37 results in male infertility concurrent with the absence of mature ADAM3 from cauda epididymal sperm. However, how PRSS37 modulates ADAM3 maturation remains largely unclear. Here, we determine the PRSS37 interactome by GFP immunoprecipitation coupled with mass spectrometry in PRSS37-EGFP knock-in mice. Three molecular chaperones (CLGN, CALR3 and PDILT) and three ADAM proteins (ADAM2, ADAM6B and ADAM4) were identified to be interacting with PRSS37. Coincidently, five of them (except ADAM4) have been reported to interact with ADAM3 precursor and regulate its maturation. We further demonstrated that PRSS37 also interacts directly with ADAM3 precursor and its deficiency impedes the association between PDILT and ADAM3. This could contribute to improper translocation of ADAM3 to the germ cell surface, leading to ADAM3 loss in PRSS37-null mature sperm. The understanding of the maturation mechanisms of pivotal sperm plasma membrane proteins will pave the way toward novel strategies for contraception and the treatment of unexplained male infertility.


Assuntos
Infertilidade Masculina , Glicoproteínas de Membrana , Proteínas ADAM/genética , Animais , Epididimo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Isomerases de Dissulfetos de Proteínas , Serina Proteases , Espermatozoides
4.
Biol Reprod ; 107(4): 1139-1154, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863763

RESUMO

Serine proteases (PRSS) constitute nearly one-third of all proteases, and many of them have been identified to be testis-specific and play significant roles during sperm development and male reproduction. PRSS54 is one of the testis-specific PRSS in mouse and human but its physiological function remains largely unclear. In the present study, we demonstrate in detail that PRSS54 exists not only in testis but also in mature sperm, exhibiting a change in protein size from 50 kDa in testis to 42 kDa in sperm. Loss of PRSS54 in mice results in male subfertility, acrosome deformation, defective sperm-zona penetration, and phenotypes of male subfertility and acrosome deformation can be rescued by Prss54 transgene. Ultrastructure analyses by transmission electronic microscopy further reveal various morphological abnormalities of Prss54-/- spermatids during spermiogenesis, including unfused vacuoles in acrosome, detachment and eccentrical localization of the acrosomal granules, and asymmetrical elongation of the nucleus. Subcellular localization of PRSS54 display that it appears in the acrosomal granule at the early phase of acrosome biogenesis, then extends along the inner acrosomal membrane, and ultimately presents in the acrosome region of the mature sperm. PRSS54 interacts with acrosomal proteins ZPBP1, ZPBP2, ACRBP, and ZP3R, and loss of PRSS54 affects the distribution of these proteins in testis and sperm, although their protein levels are largely unaffected. Moreover, Prss54-/- sperm are more sensitive to acrosome reaction inducers.


Assuntos
Acrossomo , Infertilidade Masculina , Acrossomo/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas do Ovo , Humanos , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Morfogênese , Proteínas/metabolismo , Sêmen/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
5.
J Reprod Dev ; 66(1): 57-65, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801914

RESUMO

Testis-specific genes are prone to affect spermatogenesis or sperm fertility, and thus may play pivotal roles in male reproduction. However, whether a gene really affects male reproduction in vivo needs to be confirmed using a gene knock-out (KO) model, a 'gold standard' method. Increasing studies have found that some of the evolutionarily conserved testis-enriched genes are not essential for male fertility. In this study, we report that 1700121C10Rik, a previously uncharacterized gene, is specifically expressed in the testis and produces two long noncoding RNAs (lncRNAs) in mouse: Transcript 1 and Transcript 2. qRT-PCR, northern blotting, and in situ hybridization revealed that expression of both the lncRNAs commenced at the onset of sexual maturity and was predominant in round and elongating spermatids during spermiogenesis. Moreover, we found different subcellular localization of Transcript 1 and Transcript 2 that was predominant in the cytoplasm and nucleus, respectively. 1700121C10Rik-KO mouse model disrupting Transcript 1 and Transcript 2 expression was generated by CRISPR/Cas9 to determine their role in male reproduction. Results showed that 1700121C10Rik-KO male mice were fully fertile with approximately standard testis size, testicular histology, sperm production, sperm morphology, sperm motility, and induction of acrosome reaction. Thus, we conclude that both the testis-specific 1700121C10Rik-produced lncRNAs are dispensable for male fertility in mice under standard laboratory conditions.


Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , RNA Longo não Codificante/genética , Espermatogênese/genética , Testículo/metabolismo , Animais , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA Longo não Codificante/metabolismo , Motilidade dos Espermatozoides/genética
6.
Hum Mol Genet ; 26(7): 1280-1293, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169396

RESUMO

Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.


Assuntos
Ossos do Carpo/anormalidades , Diferenciação Celular/genética , Fator 9 de Crescimento de Fibroblastos/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades , Animais , Ossos do Carpo/fisiopatologia , Condrogênese/genética , Fator 9 de Crescimento de Fibroblastos/biossíntese , Fator 9 de Crescimento de Fibroblastos/química , Deformidades Congênitas do Pé/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 5 de Diferenciação de Crescimento/genética , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Articulações/crescimento & desenvolvimento , Articulações/patologia , Camundongos , Mutação Puntual , Conformação Proteica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXD/genética , Transdução de Sinais , Estribo/fisiopatologia , Sinostose/fisiopatologia , Ossos do Tarso/fisiopatologia
7.
Acta Biochim Biophys Sin (Shanghai) ; 50(7): 666-675, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860267

RESUMO

Multiple sclerosis and its primary animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by immune-mediated demyelination and neurodegeneration that may be mediated by inhibition of the nuclear factor-κB (NF-κB) signaling pathway. Gpr97, encoded by Adgrg3, has been reported to regulate the activity of NF-κB. In this study, using a previously established Adgrg3-knockout mouse model, we investigated the roles of Gpr97 in the development of autoimmune CNS disease in mice. We found a marked increase in the expression of Adgrg3 in spinal cords of mice with EAE. Adgrg3-deficient (Adgrg3-/-) mice with EAE exhibited increases in peak severity and the cumulative disease score compared with littermate controls, followed by a notable increase of leukocyte infiltration and more extensive demyelination. The percentages of Th1/Th17 cells in the CNS were significantly increased in Adgrg3-/- mice and accompanied by high levels of interleukin (IL)-6, interferon-γ, tumor necrosis factor-α, and IL-17. An in vitro culture assay verified that Gpr97 regulated proinflammatory cytokine production. Taken together, our results show that Gpr97 plays an important role in the development of EAE and may have a therapeutic potential for the treatment of CNS autoimmunity.


Assuntos
Sistema Nervoso Central/imunologia , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 50(10): 984-995, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137205

RESUMO

Tafa is a family of small secreted proteins with conserved cysteine residues and restricted expression in the brain. It is composed of five highly homologous genes referred to as Tafa-1 to -5. Among them, Tafa-2 is identified as one of the potential genes responsible for intellectual deficiency in a patient with mild mental retardation. To investigate the biological function of Tafa-2 in vivo, Tafa-2 knockout mice were generated. The mutant mice grew and developed normally but exhibited impairments in spatial learning and memory in Morris water maze test and impairments in short- and long-term memory in novel object recognition test, accompanied with increased level of anxiety-like behaviors in open-field test and elevated plus maze test, and decreased level of depression-like behaviors in forced-swim test and tail-suspension test. Further examinations revealed that Tafa-2 deficiency causes severe neuronal reduction and increased apoptosis in the brain of Tafa-2-/- mice via downregulation of PI3K/Akt and MAPK/Erk pathways. Conformably, the expression levels of CREB target genes including BDNF, c-fos and NF1, and CBP were found to be reduced in the brain of Tafa-2-/- mice. Taken together, our data indicate that Tafa-2 may function as a neurotrophic factor essential for neuronal survival and neurobiological functions.


Assuntos
Encéfalo/metabolismo , Quimiocinas CC/genética , Deficiências da Aprendizagem/genética , Transtornos da Memória/genética , Neurônios/metabolismo , Animais , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/fisiopatologia , Quimiocinas CC/deficiência , Transtorno Depressivo/genética , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Humanos , Deficiências da Aprendizagem/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia
9.
Am J Med Genet B Neuropsychiatr Genet ; 174(8): 828-838, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28981195

RESUMO

Nhe5, a Na+ /H+ exchanger, is predominantly expressed in brain tissue and is proposed to act as a negative regulator of dendritic spine growth. Up to now, its physiological function in vivo remains unclear. Here we show that Nhe5-deficient mice exhibit markedly enhanced learning and memory in Morris water maze, novel object recognition, and passive avoidance task. Meanwhile, the pre- and post-synaptic components, synaptophysin (Syn) and post-synaptic density 95 (PSD95) expression levels were found increased in hippocampal regions lacking of Nhe5, suggesting a possible alterations in neuronal synaptic structure and function in Nhe5-/- mice. Further study reveals that Nhe5 deficiency leads to higher Bdnf expression levels, followed by increased phosphorylated TrkB and PLCγ levels, indicating that Bdnf/TrkB signaling is activated due to Nhe5 deficiency. Moreover, the corresponding brain regions of Nhe5-/- mice display elevated ERK/CaMKII/CREB phosphorylation levels. Taken together, these findings uncover a novel physiological function of Nhe5 in regulating learning and memory, further implying Nhe5 as a potential therapeutic target for improving cognition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Receptor trkB/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Receptor trkB/genética , Transdução de Sinais , Regulação para Cima
10.
Rheumatology (Oxford) ; 55(9): 1681-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27235388

RESUMO

OBJECTIVES: Little is known about the biochemical mediators IL-7 that correlate with the initiation and progression of OA. We performed this study to assess the role of variants of IL-7 in OA susceptibility in the Chinese Han population. METHODS: We performed a retrospective, case-control study in the Chinese Han population from 2013 to 2015. Four single nucleotide polymorphisms were genotyped (using a ligase detection reaction) in 602 patients and 454 controls. Differences between groups were analysed, and association was assessed by the odds ratio (OR) and 95% CI. RESULTS: Among these polymorphisms, rs2583764, rs2583760 and rs6993386 showed no significant association with OA in the Chinese Han population {rs2583764 [P-allele = 0.98651, P-genotype = 0.40392, OR (95% CI): 1.00162 (0.83066, 1.20775)]; rs2583760 [P-allele = 0.384500, P-genotype = 0.58752, OR (95% CI): 0.69859 (0.30996, 1.57449)]; rs6993386 [P-allele = 0.69525, P-genotype = 0.50712, OR (95% CI): 0.96432 (0.80406, 1.15653)]}. However, the results showed that the rs2583759 polymorphism was significantly associated with OA [P-allele = 0.00 P-genotype = 3.86 × 10(-30), OR (95% CI): 0.27794 (0.22407, 0.34476)], even when the 10 000 times permutation was performed (P-allele-permutation < 0.00010, P-genotype-permutation = 0.00010). Haplotype analyses showed A-G-A-C, A-G-A-T and G-G-G-C of rs2583764-rs2583760-rs6993386-rs2583759 were risk factors for OA, both before or after the 10 000 times permutation, indicating IL-7 to be associated with OA. CONCLUSION: There was a significant association between IL-7, especially rs2583759, and OA in the Chinese Han population.


Assuntos
Interleucina-7/genética , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único/genética , Povo Asiático/genética , Estudos de Casos e Controles , China/etnologia , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
11.
Proc Natl Acad Sci U S A ; 110(16): 6459-64, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23553835

RESUMO

Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3'-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3'-UTR fragments can be recognized by Rig-I. The 3'-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3'-UTR-mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Northern Blotting , Western Blotting , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Imunofluorescência , Imunoprecipitação , Luciferases , Camundongos , Camundongos Knockout , Análise em Microsséries , Simulação de Dinâmica Molecular , NF-kappa B/genética , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/metabolismo
12.
Int J Biol Sci ; 20(9): 3461-3479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993574

RESUMO

Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Osteoporose , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Células-Tronco Mesenquimais/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Camundongos , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Diferenciação Celular , Osteogênese/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Camundongos Endogâmicos C57BL , Adipogenia , Tecido Adiposo/metabolismo
13.
Biochem Biophys Res Commun ; 438(1): 97-102, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872115

RESUMO

Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM-DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Deleção de Genes , Marcação de Genes/métodos , Cinesinas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosforilação/genética , Lesões Pré-Cancerosas/genética
14.
Reprod Sci ; 30(1): 145-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471551

RESUMO

Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via ß-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.


Assuntos
Proteômica , Serina Proteases , Testículo , Animais , Feminino , Masculino , Camundongos , Metabolismo Energético , Isomerases de Dissulfetos de Proteínas/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Serina Proteases/deficiência , Serina Proteases/genética , Camundongos Knockout
15.
Am J Hum Genet ; 85(1): 53-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19589401

RESUMO

Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer.(1,2) Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9(S99N) is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9(S99N) induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased beta-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9(S99N) to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.


Assuntos
Éxons , Fator 9 de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto , Sinostose/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Fator 9 de Crescimento de Fibroblastos/química , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Transdução de Sinais
16.
Hum Cell ; 35(4): 1071-1083, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35416622

RESUMO

Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.


Assuntos
Proteína DEAD-box 58 , Melanoma , Quinases de Proteína Quinase Ativadas por Mitógeno , Receptores Imunológicos , Neoplasias Cutâneas , Animais , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Melanoma/genética , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Biology (Basel) ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421382

RESUMO

Serine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear. In this study, we assessed the relationship between STK10 and the immune cells in the tumor microenvironment of prostate cancer through bioinformatic analysis, and investigated the role of Stk10 in tumor growth using an Stk10 knockout mouse model. The results showed that STK10 is significantly associated with the tumor-infiltrating immune cells including lymphocytes, neutrophils, macrophages and dendritic cells. The target deletion of host Stk10 results in increased tumor growth, due to decreased activated/effector cytotoxic T lymphocytes (CTLs) and increased vessel density in the TME. In conclusion, we demonstrate that host Stk10 is involved in the host anti-tumor response by modulating the activated tumor-infiltrated CTLs and angiogenesis.

18.
J Bone Miner Res ; 36(4): 779-791, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33316109

RESUMO

Fibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3). Moreover, newborn and adult S99N mutant mice exhibited significantly increased bone mass, suggesting that Fgf9 also participated in bone homeostasis. Histomorphology, tomography, and serological analysis of homozygous newborns and heterozygous adults showed that the Fgf9S99N mutation immensely increased bone mass and bone formation in perinatal and adult bones and decreased osteoclastogenesis in adult bone. An in vitro differentiation assay further revealed that the S99N mutation enhanced bone formation by promoting osteogenesis and mineralization of bone marrow mesenchymal stem cells (BMSCs) and attenuating osteoclastogenesis of bone marrow monocytes (BMMs). Considering the loss-of-function effect of the S99N mutation, we hypothesized that Fgf9 itself inhibits osteogenesis and promotes osteoclastogenesis. An in vitro differentiation assay revealed that Fgf9 prominently inhibited BMSC osteogenic differentiation and mineralization and showed for the first time that Fgf9 promoted osteoclastogenesis by enhancing preosteoclast aggregation and cell-cell fusion. Furthermore, specific inhibitors and in vitro differentiation assays were used and showed that Fgf9 inhibited BMSC osteogenesis mainly via the MEK/ERK pathway and partially via the PI3K/AKT pathway. Fgf9 also promoted osteoclastogenesis as a potential costimulatory factor with macrophage colony-stimating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by coactivating the MAPK and PI3K/AKT signaling pathways. Taken together, our study demonstrated that Fgf9 is a negative regulator of bone homeostasis by regulating osteogenesis and osteoclastogenesis and provides a potential therapeutic target for bone degenerative diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteogênese , Proteínas Proto-Oncogênicas c-akt , Adulto , Animais , Diferenciação Celular , Fator 9 de Crescimento de Fibroblastos , Humanos , Recém-Nascido , Camundongos , NF-kappa B , Osteoclastos , Fosfatidilinositol 3-Quinases , Ligante RANK
19.
Exp Ther Med ; 22(2): 851, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34149897

RESUMO

Prostate cancer (PCa) is one of the most common types of cancer and is a serious threat to men's health due to the high rate of incidence and metastasis. However, the exact underlying pathology of this malignant disease has yet to be fully elucidated. The ezrin-radixin-moesin (ERM) family of proteins are associated with the development and metastasis of various types of cancer. Serine threonine kinase 10 (STK10) is an ERM kinase that is involved in the activation of ERM proteins and serves essential roles in the aggregation and adhesion of lymphocytes. To evaluate the functional roles of STK10 in the pathogenesis of PCa, a STK10-knockout (KO) DU145 PCa cell line was generated using the CRISPR-Cas9 gene editing system, and the effects of STK10 deletion on tumor biological behaviors were further analyzed. The present data suggested that STK10 KO promoted PCa cell proliferation by inhibiting p38 MAPK activation and suppressed migration primarily via the inhibition of p38 MAPK signaling and ERM protein activation. To the best of our knowledge, this is the first study to provide evidence that STK10 plays important roles in the proliferation and migration of PCa cells, which will be useful for further investigation into the pathogenesis of this disease.

20.
Cell Death Dis ; 12(4): 362, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824276

RESUMO

Adhesion G protein-coupled receptor A1 (ADGRA1, also known as GPR123) belongs to the G protein-coupled receptors (GPCRs) family and is well conserved in the vertebrate lineage. However, the structure of ADGRA1 is unique and its physiological function remains unknown. Previous studies have shown that Adgra1 is predominantly expressed in the central nervous system (CNS), indicating its important role in the transduction of neural signals. The aim of this study is to investigate the central function of Adgra1 in vivo and clarify its physiological significance by establishing an Adgra1-deficient mouse (Adgra1-/-) model. The results show that Adgra1-/- male mice exhibit decreased body weight with normal food intake and locomotion, shrinkage of body mass, increased lipolysis, and hypermetabolic activity. Meanwhile, mutant male mice present elevated core temperature coupled with resistance to hypothermia upon cold stimulus. Further studies show that tyrosine hydroxylase (TH) and ß3-adrenergic receptor (ß3-AR), indicators of sympathetic nerve excitability, are activated as well as their downstream molecules including uncoupling protein 1 (UCP1), coactivator 1 alpha (PGC1-α) in brown adipose tissue (BAT), and hormone-sensitive lipase (HSL) in white adipose tissue (WAT). In addition, mutant male mice have higher levels of serum T3, T4, accompanied by increased mRNAs of hypothalamus-pituitary-thyroid axis. Finally, Adgra1-/- male mice present abnormal activation of PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus. Overexpression of ADGRA1 in Neuro2A cell line appears to suppress these two signaling pathways. In contrast, Adgra1-/- female mice show comparable body weight along with normal metabolic process to their sex-matched controls. Collectively, ADGRA1 is a negative regulator of sympathetic nervous system (SNS) and hypothalamus-pituitary-thyroid axis by regulating PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus of male mice, suggesting an important role of ADGRA1 in maintaining metabolic homeostasis including energy expenditure and thermogenic balance.


Assuntos
Tecido Adiposo Branco/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/fisiologia , Masculino , Camundongos , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/metabolismo , Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa