Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(9): 809, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138752

RESUMO

Tea is a vital agricultural product in Taiwan. Due to global warming, the increasing extreme weather events have disrupted tea garden conditions and caused economic losses in agriculture. To address these challenges, a comprehensive tea garden risk assessment model, a Bayesian network (BN), was developed by considering various factors, including meteorological data, disaster events, tea garden environment (location, altitude, tea tree age, and soil characteristics), farming practices, and farmer interviews, and constructed risk assessment indicators for tea gardens based on the climate change risk analysis concept from the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). The results demonstrated an accuracy of over 92% in both validating and testing the model for tea tree damage and yield reduction. Sensitivity analysis revealed that tea tree damage and yield reduction were mutually influential, with weather, fertilization, and irrigation also impacting tea garden risk. Risk analysis under climate change scenarios from various global climate models (GCMs) indicated that droughts may pose the highest risk with up to 41% and 40% of serious tea tree growth damage and tea yield reduction, respectively, followed by cold events that most tea gardens may have less than 20% chances of serious impacts on tea tree growth and tea yield reduction. The impacts of heavy rains get the least concern because all five tea gardens may not be affected in terms of tea tree growth and tea yield with large chances of 67 to 85%. Comparing farming methods, natural farming showed lower disaster risk than conventional and organic approaches. The tea plantation risk assessment model can serve as a valuable resource for analyzing and offering recommendations for tea garden disaster management and is used to assess the impact of meteorological disasters on tea plantations in the future.


Assuntos
Teorema de Bayes , Mudança Climática , Chá , Taiwan , Medição de Risco , Altitude , Camellia sinensis/crescimento & desenvolvimento , Agricultura , Jardins , Monitoramento Ambiental/métodos
2.
Nanotechnology ; 22(4): 045202, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21157011

RESUMO

For InGaN/GaN based nanorod devices using a top-down etching process, the optical output power is affected by non-radiative recombination due to sidewall defects (which decrease light output efficiency) and the mitigated quantum confined Stark effect (QCSE) due to strain relaxation (which increases internal quantum efficiency). Therefore, the exploration of low-temperature optical behaviors of nanorod light emitting diodes (LEDs) will help identify the correlation between these two factors. In this work, low-temperature electroluminescent (EL) spectra of InGaN/GaN nanorod arrays were explored and compared with those of planar LEDs. The nanorod LED exhibits a much higher optical output percentage increase when the temperature decreases. The increase is mainly attributed to the increased carriers in the quantum wells for radiative recombination. Also, due to a better spatial overlap of electrons and holes in the quantum wells, the increased number of carriers can be more efficiently recombined in the nanorod device. Next, while the nanorod array shows nearly constant peak energy in the EL spectra at various injection currents at the temperature of 300 K, a blue shift has been observed at 190 K. The results suggest that with less non-radiative recombination and thus more carriers in the quantum wells, carrier screening and band filling still prevail in the partially strain relaxed nanorods. Moreover, when the temperature drops to 77 K, the blue shift of both nanorod and planar devices disappears and the optical output power decreases since there are fewer carriers in the quantum wells for radiative recombination.

3.
Opt Lett ; 35(24): 4109-11, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21165106

RESUMO

Low-temperature electroluminescence from ZnO nanowire light-emitting arrays is reported. By inserting a thin MgO current blocking layer in between ZnO nanowire and p-GaN, high-purity UV light emission at wavelength 398 nm was obtained. As the temperature is decreased, contrary to the typical GaN-based light emitting diodes, our device shows a decrease of optical output intensity. The results are associated with various carrier tunneling processes and frozen MgO defects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa