Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 116(5): 110921, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173892

RESUMO

Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.


Assuntos
Diferenciação Celular , Proliferação de Células , Mioblastos , Animais , Mioblastos/metabolismo , Mioblastos/citologia , Ovinos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células Cultivadas , Apoptose , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética
2.
Genomics ; 116(5): 110886, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880312

RESUMO

BACKGROUND: Fibre diameter is an important economic trait of wool fibre. As the fibre diameter decreases, the economic value of wool increases. Therefore, understanding the mechanism of wool fibre diameter regulation is important in improving the value of wool. RESULTS: In this study, we used non-targeted metabolome and reference transcriptome data to detect differences in metabolites and genes in groups of Alpine Merino sheep with different wool fibre diameter gradients, and integrated metabolome and transcriptome data to identify key genes and metabolites that regulate wool fibre diameter. We found 464 differentially abundant metabolites (DAMs) and 901 differentially expressed genes (DEGs) in four comparisons of groups with different wool fibre diameters. Approximately 25% of the differentially abundant metabolites were lipid and lipid-like molecules. These molecules were predicted to be associated with skin development and keratin filament by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Key genes, including COL5A2, COL5A3, CREB3L4, COL1A1, and SFRP4, were identified by gene set enrichment analysis. CONCLUSIONS: Key genes regulating wool fibre diameter were identified, the effects of lipid molecules on wool performance were investigated, and potential synergies between genes and metabolites were postulated, providing a theoretical framework for fine wool sheep breeding.


Assuntos
Metaboloma , Transcriptoma , Fibra de Lã , Animais , Ovinos/genética , Ovinos/metabolismo , Lã/metabolismo
3.
Genomics ; 116(6): 110945, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341298

RESUMO

BACKGROUND: Balanced lipid metabolism can improve the growth performance and meat quality of livestock. The m6A methylation-related genes METTL3 and FTO play important roles in animal lipid metabolism; however, the mechanism through which they regulate lipid metabolism in sheep is unclear. RESULTS: We established lipid deposition models of hepatocytes and preadipocytes in Hu sheep. In the hepatocyte lipid deposition model, the genes expression levels of FABP4, Accα, ATGL and METTL3, METTL14, and FTO-were significantly up-regulated after lipid deposition (P < 0.05). Transcriptomic and metabolomic analyses showed that lipid deposition had a significant effect on MAPK, steroid biosynthesis, and glycerophospholipid metabolism pathway in hepatocytes. The m6A methylation level decreased but the difference was not significant after METTL3 interference, and the expression levels of FABP4 and ATGL increased significantly (P < 0.05); the m6A methylation level significantly increased following METTL3 overexpression, and LPL and ATGL expression levels significantly decreased (P < 0.05), indicating that overexpression of METTL3 inhibited the expression of lipid deposition-related genes in a m6A-dependent manner. The m6A methylation level was significantly increased, ATGL expression was significantly decreased (P < 0.05), and LPL, FABP4, and Accα expression was not significantly changed following FTO interference (P > 0.05); the m6A methylation level was significantly decreased after FTO overexpression, and LPL, FABP4, and ATGL expression was significantly increased (P < 0.05), indicating that FTO overexpression increased the expression of lipid deposition-related genes in a m6A-dependent manner. Transcriptomic and metabolomic analyses showed that m6A methylation modification mainly regulated lipid metabolism through triglyceride metabolism, adipocytokine signaling, MAPK signaling, and fat digestion and absorption in hepatocytes. In the lipid deposition model of preadipocytes, the regulation of gene expression is the same as that in hepatocytes. CONCLUSIONS: METTL3 significantly inhibited the expression of lipid deposition-related genes, whereas FTO overexpression promoted lipid deposition. Our study provides a theoretical basis and reference for accurately regulating animal lipid deposition by mastering METTL3 and FTO genes to promote high-quality animal husbandry.

4.
J Cell Physiol ; : e31385, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030845

RESUMO

This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/ß-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/ß-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/ß-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.

5.
BMC Genomics ; 25(1): 906, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350030

RESUMO

BACKGROUND: The Tibetan sheep is one of the three major primitive sheep breeds in China, representing a unique and high-quality genetic resource in the Qinghai-Tibet Plateau and neighboring high-altitude regions, exhibiting exceptional adaptability to high-altitude climatic environments. However, research on the genetic relationships among different populations of Tibetan sheep at the whole-genome level remains insufficient. This study aims to explore the population structure and historical dynamics among 11 Tibetan sheep populations, accurately assess the genetic diversity within the populations, and providing a theoretical basis for the development of targeted genetic breeding strategies for Tibetan sheep. RESULTS: In this study, a total of 10,884,454 high-quality SNPs were obtained. All Tibetan sheep populations exhibited varying degrees of linkage disequilibrium, with similar decay rates; among them, the WT population showed the fastest decay, while the TS population exhibited the slowest decay rate. Analyses using Tajima's D and π indicated that the genetic diversity levels of the Tibetan sheep populations are generally low. Fst results revealed that most populations exhibited moderate to low levels of genetic differentiation. The effective population size among Tibetan sheep populations showed an increasing trend over time. The evolutionary relationships among Tibetan sheep populations reflect the correlation between their geographical locations and genomic genetic distances, while also indirectly confirming the impact of historical activities such as early human migration, admixture, fusion, and expansion on the population sizes and distributions of Tibetan sheep. CONCLUSIONS: The results indicate that the genetic diversity levels and genetic differentiation among Tibetan sheep populations are relatively low. In this study, we identified the genetic characteristics of Tibetan sheep populations, which exhibit low levels of diversity, genetic differentiation, and a strong population structure. A deeper genomic exploration of the population structure and diversity status of Tibetan sheep populations will provide theoretical support for subsequent genetic breeding and diversity conservation efforts.


Assuntos
Variação Genética , Genética Populacional , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Animais , Tibet , Ovinos/genética , Filogenia , Genômica
6.
BMC Genomics ; 25(1): 641, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937677

RESUMO

BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.


Assuntos
Peso Corporal , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , , Animais , Peso Corporal/genética , Lã/crescimento & desenvolvimento , Ovinos/genética , Ligação Genética , Marcadores Genéticos , Sequenciamento Completo do Genoma , Fenótipo , Carneiro Doméstico/genética , Genótipo
7.
BMC Genomics ; 25(1): 606, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886664

RESUMO

BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.


Assuntos
Polimorfismo de Nucleotídeo Único , , Animais , Ovinos/genética , Seleção Genética , Pigmentação/genética , Estudo de Associação Genômica Ampla
8.
Genet Sel Evol ; 56(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565986

RESUMO

BACKGROUND: Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS: Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS: Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.


Assuntos
Genoma , Seleção Genética , Ovinos/genética , Animais , China , Análise de Sequência de DNA , Altitude , Polimorfismo de Nucleotídeo Único
9.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474221

RESUMO

Hybridization of livestock can be used to improve varieties, and different hybrid combinations produce unique breeding effects. In this study, male Southdown and Suffolk sheep were selected to hybridize with female Hu sheep to explore the effects of male parentage on muscle growth and the development of offspring. Using data-independent acquisition technology, we identified 119, 187, and 26 differentially abundant proteins (DAPs) between Hu × Hu (HH) versus Southdown × Hu (NH), HH versus Suffolk × Hu (SH), and NH versus SH crosses. Two DAPs, MYOZ2 and MYOM3, were common to the three hybrid groups and were mainly enriched in muscle growth and development-related pathways. At the myoblast proliferation stage, MYOZ2 expression decreased cell viability and inhibited proliferation. At the myoblast differentiation stage, MYOZ2 expression promoted myoblast fusion and enhanced the level of cell fusion. These findings provide new insights into the key proteins and metabolic pathways involved in the effect of male parentage on muscle growth and the development of hybrid offspring in sheep.


Assuntos
Músculos , Proteômica , Masculino , Feminino , Animais , Ovinos , Diferenciação Celular , Crescimento e Desenvolvimento , Desenvolvimento Muscular
10.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894908

RESUMO

Wool fiber is a textile material that is highly valued based on its diameter, which is crucial in determining its economic value. To analyze the molecular mechanisms regulating wool fiber diameter, we used a Data-independent acquisition-based quantitative proteomics approach to analyze the skin proteome of Alpine Merino sheep with four fiber diameter ranges. From three contrasts of defined groups, we identified 275, 229, and 190 differentially expressed proteins (DEPs). Further analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that pathways associated with cyclic adenosine monophosphate and peroxisome proliferator-activated receptor signaling are relevant to wool fiber diameter. Using the K-means method, we investigated the DEP expression patterns across wool diameter ranges. Using weighted gene co-expression network analysis, we identified seven key proteins (CIDEA, CRYM, MLX, TPST2, GPD1, GOPC, and CAMK2G) that may be involved in regulating wool fiber diameter. Our findings provide a theoretical foundation for identifying DEPs and pathways associated with wool fiber diameter in Alpine Merino sheep to enable a better understanding of the molecular mechanisms underlying the genetic regulation of wool fiber quality.


Assuntos
Proteoma , Fibra de Lã , Animais , Proteoma/metabolismo , Lã/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
11.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569302

RESUMO

Heat stress is an important environmental factor affecting livestock production worldwide. Primary hepatocytes and preadipocytes derived from Hu sheep were used to establish a heat stress model. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that heat induction significantly increased the expression levels of heat stress protein (HSP) genes and the N6-methyladenosine (m6A) methylation modification genes: methyltransferase-like protein 3 (METTL3), methyltransferase-like protein 14 (METTL14), and fat mass and obesity associated protein (FTO). Heat stress simultaneously promoted cell apoptosis. Transcriptome sequencing identified 3980 upregulated genes and 2420 downregulated genes related to heat stress. A pathway enrichment analysis of these genes revealed significant enrichment in fatty acid biosynthesis, degradation, and the PI3K-Akt and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Overexpression of METTL3 in primary hepatocytes led to significant downregulation of HSP60, HSP70, and HSP110, and significantly increased mRNA m6A methylation; FTO interference generated the opposite results. Primary adipocytes showed similar results. Transcriptome analysis of cells under METTL3 (or FTO) inference and overexpression revealed differentially expressed genes enriched in the mitogen-activated protein kinase (MAPK) signaling pathways, as well as the PI3K-Akt and Ras signaling pathways. We speculate that METTL3 may increase the level of m6A methylation to inhibit fat deposition and/or inhibit the expression of HSP genes to enhance the body's resistance to heat stress, while the FTO gene generated the opposite molecular mechanism. This study provides a scientific basis and theoretical support for sheep feeding and management practices during heat stress.

12.
BMC Genomics ; 23(1): 457, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35725366

RESUMO

BACKGROUND: Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. RESULTS: Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT-qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. CONCLUSION: In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails.


Assuntos
Adipogenia , Transcriptoma , Adipócitos/metabolismo , Adipogenia/genética , Animais , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Ovinos/genética , Cauda/metabolismo
13.
Curr Issues Mol Biol ; 44(8): 3621-3631, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005144

RESUMO

The liver plays a crucial role in metabolism, synthesis, biotransformation, secretion, and excretion. Hepatocytes are the main cells of the liver and can be used as a cell model to study liver function. The classic method of collagenase perfusion to isolate hepatocytes is a two-step technique that is time-consuming, labor-intensive, and has high technical requirements. Therefore, in this study, we compared different methods for isolating and culturing primary hepatocytes. We found that the 0.25% trypsin and 0.1 mg/mL type IV collagenase mixture at a 1:1 ratio showed the most efficient cell digestion, and William's Medium E complete medium showed the best growth and proliferation. The isolated cells showed the typical irregular polygonal morphology of hepatocytes. Periodic acid−Schiff staining and immunofluorescence confirmed that the isolated cells were positive for glycogen and hepatocyte-specific markers cytokeratin 18, AFP, and albumin. On subculturing, stable cell lines were obtained. Therefore, we optimized the isolation and in vitro culture method to obtain highly pure (>95%) sheep primary hepatocytes from newborn sheep liver tissue.

14.
Curr Issues Mol Biol ; 44(2): 483-497, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35723319

RESUMO

Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.

15.
Genomics ; 113(1 Pt 2): 484-492, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976974

RESUMO

N6-methyladenosine (m6A) mRNA methylation varies in response to stress. However, no map of m6A mRNA methylation has been obtained for sheep, nor is it known what effect this has on regulating heat stress in sheep. Here, we obtained m6A methylation maps of sheep liver tissues with and without heat stress by MeRIP-seq. In total, 8306 m6A peaks associated with 2697 genes were detected in the heat stress group, and 12,958 m6A peaks associated with 5494 genes were detected in the control group. Peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. Methylation levels of heat stress and control sheep were higher near stop codons, although methylation was significantly lower in heat stress sheep. GO and KEGG revealed that differential m6A-containing genes were significantly enriched in the stress response and fat metabolism. Our results showed that m6A mRNA methylation modifications regulate heat stress in sheep.


Assuntos
Adenosina/análogos & derivados , Resposta ao Choque Térmico , Fígado/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Metilação , RNA Mensageiro/metabolismo , Ovinos
16.
BMC Genomics ; 22(1): 127, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602144

RESUMO

BACKGROUND: The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS: A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION: This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.


Assuntos
Estudo de Associação Genômica Ampla , , Animais , China , Fenótipo , Ovinos/genética , Carneiro Doméstico
17.
BMC Genomics ; 22(1): 78, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485316

RESUMO

BACKGROUND: Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. RESULTS: A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. "Deletion" events took place more frequently than "duplication" or "both" events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39-55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. CONCLUSIONS: In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.


Assuntos
Variações do Número de Cópias de DNA , , Animais , China , Mapeamento Cromossômico , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética
18.
Genomics ; 106(5): 295-300, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26244906

RESUMO

The sheep (Ovis aries) plays a major socio-economic role in the world. Copy number variations (CNVs) are increasingly recognized as a key and potent source of genetic variation and phenotypic diversity, but little is known about the extent to which CNVs contribute to genetic variation in Chinese sheep breeds. Analyses of CNVs in the genomes of eight sheep breeds were performed using the sheep SNP50 BeadChip genotyping array. A total of 111 CNV regions (CNVRs) were obtained from 160 Chinese sheep breeds. These CNVRs covered 13.75Mb of the sheep genome sequence. A total of 22 Go terms and 17 candidate genes were obtained from the functional analysis. Ten CNVRs were selected for validation, of which 7 CNVRs were further experimentally confirmed by quantitative PCR. Four candidate genes were selected to confirm the results of the functional analysis. These results provide a resource for furthering understanding of ruminant biology, and for further improving the genetic quality of sheep breeds.


Assuntos
Variações do Número de Cópias de DNA , Análise de Sequência com Séries de Oligonucleotídeos , Ovinos/genética , Animais , Genoma , Genômica
19.
Sci Data ; 11(1): 711, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951548

RESUMO

Guide Black-Fur sheep (GD) is a breed of Tibetan sheep (Ovis aries) that lives in the Qinghai-Tibetan plateau region at an altitude of over 4,000 m. However, a lack of genomic information has made it difficult to understand the high-altitude adaptation of these sheep. We sequenced and assembled the GD reference genome using PacBio, Hi-C, and Illumina sequencing technologies. The final assembled genome size was 2.73 Gb, with a contig N50 of 20.30 Mb and a scaffold N50 of 107.63 Mb. The genome is predicted to contain 20,759 protein-coding genes, of which 98.42 have functional annotations. Repeat elements account for approximately 52.2% of the genomic landscape. The completeness of the GD genome assembly is highlighted by a BUSCO score of 93.1%. This high-quality genome assembly provides a critical resource for future molecular breeding and genetic improvement of Tibetan sheep.


Assuntos
Genoma , Carneiro Doméstico , Animais , Altitude , Cromossomos , Ovinos/genética , Carneiro Doméstico/genética , Tibet
20.
Foods ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272414

RESUMO

This study analyzed the flavor compounds in the meat of four indigenous breeds of Chinese sheep through the use of gas chromatography-ion mobility spectrometry (GC-IMS). GC-IMS provided information on the characteristics and strength of 71 volatile flavor compounds (monomers and dimers), with aldehydes, alcohols and ketones being the most abundant in all types of sheep meat. The compounds with higher intensity peaks in the sheep meat were aldehydes (n-nonanal, octanal, heptanal, 3-methylbutanal, and hexanal), alcohols (1-octen-3-ol, hexanol, and pentanol), ketones (3-hydroxy-2-butanon, 2-butanone, and 2-propanone), esters (methyl benzoate), and thiazole (trimethylthiazole). The volatile flavor components in the meat of the different breeds of sheep obtained via GC-IMS were further differentiated using principal component analysis. In addition, orthogonal partial least squares discriminant analysis (OPLS-DA) and variable importance on projection (VIP) were used to determine the characteristic flavor compounds in the meats of different breeds of sheep, and 21 differentially volatile components were screened out based on having a VIP above 1. These results indicate that GC-IMS combined with multivariate analysis is a convenient and powerful method for characterizing and discriminating sheep meat.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa