Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 90(23): 13922-13928, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394732

RESUMO

Extracellular pH (pHe) is an important regulating factor that determines many cellular processes, including proliferation, differentiation, and apoptosis. In our previous work, we developed 4-MPy (4-mercaptopyridine) modified Au nanoparticles as intracellular pH sensors based on surface-enhanced Raman spectroscopy (SERS). We herein modified a Au-nanoparticle-assembled solid SERS substrate with 4-MPy molecules for in situ pHe sensing during apoptosis. We found a more acidic extracellular environment of cancer cells than that of normal cells from the pH imaging. We then in situ investigated the temporal and spatial evolution of pHe of cancer cells after addition of transforming growth factor-ß (TGF-ß). The pHe showed a fast decrease at the beginning, followed by a slow decrease until the complete loss of cellular functions, and the pH values in and out of the cells became similar. This work shows that our SERS substrate combined with an in situ cell culture system is well suitable for in situ pHe sensing during cell processes and will be a promising technique for understanding more pHe-related biological and pathological issues.


Assuntos
Apoptose , Células 3T3-L1 , Animais , Sobrevivência Celular , Células Cultivadas , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Camundongos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
2.
Chem Sci ; 13(36): 10884-10890, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320703

RESUMO

Interfacial pH is critical to electrocatalytic reactions involving proton-coupled electron transfer (PCET) processes, and maintaining an optimal interfacial pH at the electrochemical interface is required to achieve high activity. However, the interfacial pH varies inevitably during the electrochemical reaction owing to slow proton transfer at the interfacial layer, even in buffer solutions. It is therefore necessary to find an effective and general way to promote proton transfer for regulating the interfacial pH. In this study, we propose that promoting proton transfer at the interfacial layer can be used to regulate the interfacial pH in order to enhance electrocatalytic activity. By adsorbing a bifunctional 4-mercaptopyridine (4MPy) molecule onto the catalyst surface via its thiol group, the pyridyl group can be tethered on the electrochemical interface. The pyridyl group acts as both a good proton acceptor and donor for promoting proton transfer at the interfacial layer. Furthermore, the pK a of 4MPy can be modulated with the applied potentials to accommodate the large variation of interfacial pH under different current densities. By in situ electrochemical surface-enhanced Raman spectroscopy (in situ EC-SERS), we quantitatively demonstrate that proton transfer at the interfacial layer of the Pt catalyst coated with 4MPy (Pt@4MPy) remains ideally thermoneutral during the H+ releasing electrocatalytic oxidation reaction of formic acid (FAOR) at high current densities. Thus, the interfacial pH is controlled effectively. In this way, the FAOR apparent current measured from Pt@4MPy is twice that measured from a pristine Pt catalyst. This work establishes a general strategy for regulating interfacial pH to enhance the electrocatalytic activities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa