Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526745

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with poor prognosis and high mortality. Although a large number of studies have explored its potential prognostic markers using traditional RNA sequencing (RNA-Seq) data, they have not achieved good prediction effect. In order to explore the possible prognostic signaling pathways leading to the difference in prognosis, we identified differentially expressed genes from one scRNA-seq cohort and four GEO cohorts, respectively. Then Cox and Lasso regression analysis showed that 12 genes were independent prognostic factors for PDAC. AUC and calibration curve analysis showed that the prognostic model had good discrimination and calibration. Compared with the low-risk group, the high-risk group had a higher proportion of gene mutations than the low-risk group. Immune infiltration analysis revealed differences in macrophages and monocytes between the two groups. Prognosis related genes were mainly distributed in fibroblasts, macrophages and type 2 ducts. The results of cell communication analysis showed that there was a strong communication between cancer-associated fibroblasts (CAF) and type 2 ductal cells, and collagen formation was the main interaction pathway.

2.
Cancer Cell Int ; 24(1): 288, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143546

RESUMO

BACKGROUND: Gastric cancer (GC) encompasses many different histological and molecular subtypes. It is a major driver of cancer mortality because of poor survival and limited treatment options. Personalised medicine in the form of patient-derived organoids (PDOs) represents a promising approach for improving therapeutic outcomes. The goal of this study was to overcome the limitations of current models by ameliorating organoid cultivation. METHODS: Organoids derived from cancer tissue were evaluated by haematoxylin and eosin staining, immunohistochemistry, mRNA, and whole-exome sequencing. Three representative chemotherapy drugs, 5-fluorouracil, docetaxel, and oxaliplatin, were compared for their efficacy against different subtypes of gastric organoids by ATP assay and apoptosis staining. In addition, drug sensitivity screening results from two publicly available databases, the Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopaedia, were pooled and applied to organoid lines. Once key targeting genes were confirmed, chemotherapy was used in combination with poly (ADP ribose) polymerase (PARP)-targeted therapy. RESULTS: We successfully constructed GC PDOs surgically resected from GC patient tissue. PDOs closely reflected the histopathological and genomic features of the corresponding primary tumours. Whole-exosome sequencing and mRNA analysis revealed that changes to the original tumour genome were maintained during long-term culture. The drugs caused divergent responses in intestinal, poorly differentiated intestinal, and diffuse gastric cancer organoids, which were confirmed in organoid lines. Poorly differentiated intestinal GC patients benefited from a combination of 5-fluorouracil and veliparib. CONCLUSION: The present study demonstrates that combining chemotherapy with PARP targeting may improve the treatment of chemotherapy-resistant tumours.

3.
Ecotoxicol Environ Saf ; 269: 115814, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100851

RESUMO

Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Células Hep G2 , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Apoptose
4.
Cell Rep ; 43(1): 113587, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206815

RESUMO

Nonalcoholic steatohepatitis (NASH) is a metabolism-associated fatty liver disease with accumulated mitochondrial stress, and targeting mitochondrial function is a potential therapy. The mitochondrial genome-encoded bioactive peptide MOTS-c plays broad physiological roles, but its effectiveness and direct targets in NASH treatment are still unclear. Here, we show that long-term preventive and short-term therapeutic effects of MOTS-c treatments alleviate NASH-diet-induced liver steatosis, cellular apoptosis, inflammation, and fibrosis. Mitochondrial oxidative capacity and metabolites profiling analysis show that MOTS-c significantly reverses NASH-induced mitochondrial metabolic deficiency. Moreover, we identify that MOTS-c directly interacts with the BH3 domain of antiapoptotic B cell lymphoma-2 (Bcl-2), increases Bcl-2 protein stability, and suppresses Bcl-2 ubiquitination. By using a Bcl-2 inhibitor or adeno-associated virus (AAV)-mediated Bcl-2 knockdown, we further confirm that MOTS-c improves NASH-induced mitochondrial dysfunction, inflammation, and fibrosis, which are dependent on Bcl-2 function. Therefore, our findings show that MOTS-c is a potential therapeutic agent to inhibit the progression of NASH.


Assuntos
Genoma Mitocondrial , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Inflamação/patologia , Fibrose , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL
5.
Heliyon ; 10(9): e30379, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765147

RESUMO

Introduction: Obesity, mainly caused by excessive accumulation of visceral fat, excessive fat metabolism will cause hormone secretion imbalance and inflammation and other diseases. is extremely detrimental to human health. Although many treatments are available for obesity, most treatments fail to exert a radical effect or are associated with several side effects. Traditional Chinese medicine (TCM) for regulating the intestinal flora, lipid content and inflammation is considered effective. Based on previous studies, Artemisia capillaris, Astragalus propinquus, Phellodendron amurense, Salvia miltiorrhiza, Poria cocos, and Anemarrhena asphodeloides were selected to prepare an innovative herbal formula. Methods: TCM was characterized by UHPLC-Q-Orbitrap-MS. The anti-inflammatory and lipid-lowering effects of the TCM formula prepared were evaluated in a high-fat diet-fed obese mouse model. The effects of the TCM formula on the intestinal flora were also investigated. Results: Weights and insulin resistance, as well as inflammation, decreased in the mice after treatment. At the same time, lipid metabolism increased after the mice were gavaged with the TCM formula for 2 weeks. The intestinal motility of the drug administration group was enhanced, with partial restoration of the intestinal flora. Conclusion: In summary, our innovative Chinese herbal formula significantly reduced weight, reduced intestinal inflammation, improved intestinal motility, and improved lipid metabolism in obese mice. Furthermore, the innovative formula effectively prevented relevant obesity-induced metastatic diseases in the mice.

6.
Sci Total Environ ; 918: 170664, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311080

RESUMO

The problem of microplastics (MPs) contamination in food has gradually come to the fore. MPs can be transmitted through the food chain and accumulate within various organisms, ultimately posing a threat to human health. The concentration of nanoplastics (NPs) exposed to humans may be higher than that of MPs. For the first time, we studied the differences in toxicity, and potential toxic effects of different polymer types of NPs, namely, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS) on HepG2 cells. In this study, PET-NPs, PVC-NPs, and PS-NPs, which had similar particle size, surface charge, and shape, were prepared using nanoprecipitation and emulsion polymerization. The results of the CCK-8 assay showed that the PET-NPs and PVC-NPs induced a decrease in cell viability in a concentration-dependent manner, and their lowest concentrations causing significant cytotoxicity were 100 and 150 µg/mL, respectively. Moreover, the major cytotoxic effects of PET-NPs and PVC-NPs at high concentrations may be to induce an increase in intracellular ROS, which in turn induces cellular damage and other toxic effects. Notably, our study suggested that PET-NPs and PVC-NPs may induce apoptosis in HepG2 cells through the mitochondrial apoptotic pathway. However, no relevant cytotoxicity, oxidative damage, and apoptotic toxic effects were detected in HepG2 cells with exposure to PS-NPs. Furthermore, the analysis of transcriptomics data suggested that PET-NPs and PVC-NPs could significantly inhibit the expression of DNA repair-related genes in the p53 signaling pathway. Compared to PS-NPs, the expression levels of lipid metabolism-related genes were down-regulated to a greater extent by PET-NPs and PVC-NPs. In conclusion, PET-NPs and PVC-NPs were able to induce higher cytotoxic effects than PS-NPs, in which the density and chemical structure of NPs of different polymer types may be the key factors causing the differences in toxicity.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Células Hep G2 , Microplásticos/toxicidade , Plásticos/toxicidade , Apoptose , Polietilenotereftalatos , Polímeros/toxicidade , Poliestirenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa