Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; 298(7): 102069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623388

RESUMO

Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.


Assuntos
Transtorno Depressivo Maior , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
2.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33731460

RESUMO

In many enveloped virus families, including HIV and HSV, a crucial, yet unexploited, step in the viral life cycle is releasing particles from the infected cell membranes. This release process is mediated by host ESCRT complex proteins, which are recruited by viral structural proteins and provides the mechanical means for membrane scission and subsequent viral budding. The prazole drug, tenatoprazole, was previously shown to bind to ESCRT complex member Tsg101 and to quantitatively block the release of infectious HIV-1 from cells in culture. In this report we show that tenatoprazole and a related prazole drug, ilaprazole, effectively block infectious Herpes Simplex Virus (HSV)-1/2 release from Vero cells in culture. By electron microscopy, we found that both prazole drugs block the transit of HSV particles through the cell nuclear membrane resulting in their accumulation in the nucleus. Ilaprazole also quantitatively blocks the release of HIV-1 from 293T cells with an EC50 of 0.8-1.2 µM, which is much more potent than tenatoprazole. Our results indicate that prazole-based compounds may represent a class of drugs with potential to be broad-spectrum antiviral agents against multiple enveloped viruses, by interrupting cellular Tsg101 interaction with maturing virus, thus blocking the budding process that releases particles from the cell.ImportanceThese results provide the basis for the development of drugs that target enveloped virus budding that can be used ultimately to control multiple virus infections in humans.

3.
Proc Natl Acad Sci U S A ; 115(31): E7408-E7417, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012602

RESUMO

Despite its long history, until now, no receptor has been identified for aspirin, one of the most widely used medicines worldwide. Here we report that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor involved in fatty acid metabolism, serves as a receptor of aspirin. Detailed proteomic analyses including cheminformatics, thermal shift assays, and TR-FRET revealed that aspirin, but not other structural homologs, acts as a PPARα ligand through direct binding at the Tyr314 residue of the PPARα ligand-binding domain. On binding to PPARα, aspirin stimulated hippocampal plasticity via transcriptional activation of cAMP response element-binding protein (CREB). Finally, hippocampus-dependent behavioral analyses, calcium influx assays in hippocampal slices and quantification of dendritic spines demonstrated that low-dose aspirin treatment improved hippocampal plasticity and memory in FAD5X mice, but not in FAD5X/Ppara-null mice. These findings highlight a property of aspirin: stimulating hippocampal plasticity via direct interaction with PPARα.


Assuntos
Aspirina/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Aspirina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
4.
Bioorg Med Chem Lett ; 29(20): 126660, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521478

RESUMO

Enzymes in the methylerythritol phosphate pathway make attractive targets for antibacterial activity due to their importance in isoprenoid biosynthesis and the absence of the pathway in mammals. The fifth enzyme in the pathway, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), contains a catalytically important zinc ion in the active site. A series of de novo designed compounds containing a zinc binding group was synthesized and evaluated for antibacterial activity and interaction with IspF from Burkholderia pseudomallei, the causative agent of Whitmore's disease. The series demonstrated antibacterial activity as well as protein stabilization in fluorescence-based thermal shift assays. Finally, the binding of one compound to Burkholderia pseudomallei IspF was evaluated through group epitope mapping by saturation transfer difference NMR.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/biossíntese , Burkholderia pseudomallei/enzimologia , Eritritol/análogos & derivados , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Eritritol/biossíntese , Humanos , Cinética , Estrutura Molecular , Ligação Proteica , Transdução de Sinais , Zinco/química
5.
Nat Chem Biol ; 12(12): 1075-1083, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27748752

RESUMO

Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.


Assuntos
Hipocampo/metabolismo , Hidroxibutiratos/farmacologia , PPAR alfa/metabolismo , Animais , Relação Dose-Resposta a Droga , Hidroxibutiratos/química , Ligantes , Camundongos , Camundongos Knockout , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácidos Oleicos/química , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacologia , Relação Estrutura-Atividade
6.
J Struct Biol ; 194(1): 18-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796657

RESUMO

Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.


Assuntos
Proteínas de Bactérias/química , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homologia de Sequência do Ácido Nucleico
7.
J Struct Funct Genomics ; 15(1): 33-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562475

RESUMO

Catenulispora acidiphila is a newly identified lineage of actinomycetes that produces antimicrobial activities and represents a promising source of novel antibiotics and secondary metabolites. Among the discovered protein coding genes, 68 % were assigned a putative function, while the remaining 32 % are genes encoding "hypothetical" proteins. Caci_0382 is one of the "hypothetical" proteins that has very few homologs. Sequence analysis shows that the protein belongs to the NTF2-like protein family. The structure of Caci_0382 demonstrates that it shares the same fold and has a similar active site as limonene-1,2-epoxide hydrolase, which suggests that it may have a related function. Using a fluorescence thermal shift assay, we identified stabilizing compounds that suggest potential natural ligands of Caci_0382. Using this information, we determined the crystal structure in complex with trimethylamine to provide a better understanding of the function of this uncharacterized protein.


Assuntos
Actinomycetales/enzimologia , Proteínas de Bactérias/ultraestrutura , Epóxido Hidrolases/ultraestrutura , Metilaminas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Clonagem Molecular , Epóxido Hidrolases/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
8.
J Virol ; 87(12): 6829-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23576501

RESUMO

Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.


Assuntos
Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/uso terapêutico , Febre por Flebótomos/tratamento farmacológico , Phlebovirus/efeitos dos fármacos , Suramina/química , Suramina/uso terapêutico , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Febre por Flebótomos/virologia , Dobramento de Proteína , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de DNA , Relação Estrutura-Atividade , Suramina/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
9.
ACS Cent Sci ; 10(1): 87-103, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292603

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure, and current treatment options are very limited. Previously, we performed a high-throughput screen to identify small molecules that inhibit protein aggregation caused by a mutation in the gene that encodes superoxide dismutase 1 (SOD1), which is responsible for about 25% of familial ALS. This resulted in three hit series of compounds that were optimized over several years to give three compounds that were highly active in a mutant SOD1 ALS model. Here we identify the target of two of the active compounds (6 and 7) with the use of photoaffinity labeling, chemical biology reporters, affinity purification, proteomic analysis, and fluorescent/cellular thermal shift assays. Evidence is provided to demonstrate that these two pyrazolone compounds directly interact with 14-3-3-E and 14-3-3-Q isoforms, which have chaperone activity and are known to interact with mutant SOD1G93A aggregates and become insoluble in the subcellular JUNQ compartment, leading to apoptosis. Because protein aggregation is the hallmark of all neurodegenerative diseases, knowledge of the target compounds that inhibit protein aggregation allows for the design of more effective molecules for the treatment of ALS and possibly other neurodegenerative diseases.

10.
Bioorg Med Chem ; 21(14): 4365-73, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23688558

RESUMO

The L-type calcium channel (LTCC) CaV1.3 is regarded as a new potential therapeutic target for Parkinson's disease. Calcium influx through CaV1.3 LTCC during autonomous pacemaking in adult dopaminergic neurons of the substantia nigra pars compacta is related to the generation of mitochondrial oxidative stress in animal models. Development of a CaV1.3 antagonist selective over CaV1.2 is essential because CaV1.2 pore-forming subunits are the predominant form of LTCCs and are abundant in the central nervous and cardiovascular systems. We have explored 1,4-dihydropyrimidines and 4H-pyrans to identify potent and selective antagonists of CaV1.3 relative to CaV1.2 LTCCs. A library of 36 dihydropyridine (DHP)-mimic 1,4-dihydropyrimidines and 4H-pyrans was synthesized, and promising chiral compounds were resolved. The antagonism studies of CaV1.3 and CaV1.2 LTCCs using DHP mimic compounds showed that dihydropyrimidines and 4H-pyrans are effective antagonists of DHPs for CaV1.3 LTCCs. Some 1,4-dihydropyrimidines are more selective than isradipine for CaV1.3 over CaV1.2, shown here by both calcium flux and patch-clamp electrophysiology experiments, where the ratio of antagonism is around 2-3. These results support the hypothesis that the modified hydrogen bonding donor/acceptors in DHP-mimic dihydropyrimidines and 4H-pyrans can interact differently with DHP binding sites, but, in addition, the data suggest that the binding sites of DHP in CaV1.3 and CaV1.2 LTCCs are very similar.


Assuntos
Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo L/química , Di-Hidropiridinas/síntese química , Mimetismo Molecular , Piranos/síntese química , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Piranos/química , Piranos/farmacologia
11.
Front Cell Dev Biol ; 10: 781558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252167

RESUMO

Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.

12.
Sci Rep ; 11(1): 15830, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349157

RESUMO

The heart is capable of activating protective mechanisms in response to ischemic injury to support myocardial survival and performance. These mechanisms have been recognized primarily in the ischemic heart, involving paracrine signaling processes. Here, we report a distant cardioprotective mechanism involving hepatic cell mobilization to the ischemic myocardium in response to experimental myocardial ischemia-reperfusion (MI-R) injury. A parabiotic mouse model was generated by surgical skin-union of two mice and used to induce bilateral MI-R injury with unilateral hepatectomy, establishing concurrent gain- and loss-of-hepatic cell mobilization conditions. Hepatic cells, identified based on the cell-specific expression of enhanced YFP, were found in the ischemic myocardium of parabiotic mice with intact liver (0.2 ± 0.1%, 1.1 ± 0.3%, 2.7 ± 0.6, and 0.7 ± 0.4% at 1, 3, 5, and 10 days, respectively, in reference to the total cell nuclei), but not significantly in the ischemic myocardium of parabiotic mice with hepatectomy (0 ± 0%, 0.1 ± 0.1%, 0.3 ± 0.2%, and 0.08 ± 0.08% at the same time points). The mobilized hepatic cells were able to express and release trefoil factor 3 (TFF3), a protein mitigating MI-R injury as demonstrated in TFF3-/- mice (myocardium infarcts 17.6 ± 2.3%, 20.7 ± 2.6%, and 15.3 ± 3.8% at 1, 5, and 10 days, respectively) in reference to wildtype mice (11.7 ± 1.9%, 13.8 ± 2.3%, and 11.0 ± 1.8% at the same time points). These observations suggest that MI-R injury can induce hepatic cell mobilization to support myocardial survival by releasing TFF3.


Assuntos
Cardiotônicos/metabolismo , Modelos Animais de Doenças , Transplante de Fígado/métodos , Fígado/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator Trefoil-3/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia
13.
Bioorg Med Chem ; 18(9): 3147-58, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20382537

RESUMO

L-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit. Recently, it was shown that Ca(V)1.3 Ca(2+) channels underlie autonomous pacemaking in adult dopaminergic neurons in the substantia nigra pars compacta, and this reliance renders them sensitive to toxins used to create animal models of Parkinson's disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca(2+) and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective Ca(V)1.3 channel antagonists are required. In an attempt to identify potent and selective antagonists of Ca(V)1.3 channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed Ca(V)1.2 and Ca(V)1.3 channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most Ca(V)1.3 selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both Ca(V)1.2 and Ca(V)1.3 channels and suggests that other classes of compounds need to be identified for Ca(V)1.3 selectivity.


Assuntos
Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Ácidos Dicarboxílicos/síntese química , Di-Hidropiridinas/síntese química , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Nifedipino/química , Nifedipino/farmacologia
14.
Cell Chem Biol ; 26(12): 1664-1680.e4, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31668517

RESUMO

Prion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI+]. We show that some identified anti-[SWI+] compounds can destabilize other non-[SWI+] prions, and their antagonizing effects can be prion- and/or variant specific. Intriguingly, among the identified hits are several previously identified anti-PrPSc compounds and a couple of US Food and Drug Administration-approved drugs for AD treatment, validating the efficacy of this HTS system. Moreover, a few hits can reduce proteotoxicity induced by expression of several pathogenic mammalian proteins. Thus, we have established a useful HTS system for identifying compounds that can potentially antagonize prionization and human proteinopathies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Príons/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Doença de Alzheimer/tratamento farmacológico , Humanos , Lectinas de Ligação a Manose/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Príons/genética , Príons/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico
15.
Nat Commun ; 10(1): 1967, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036849

RESUMO

Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core ß-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter ß-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glicosaminoglicanos/metabolismo , Escherichia coli Uropatogênica/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Virulência/química , Fatores de Virulência/metabolismo
16.
Methods Mol Biol ; 426: 209-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18542866

RESUMO

The objective of structural proteomics is to determine the structures of all protein folds found in nature and develop a public resource to organize and analyze protein structures and fold families. High throughput (HTP) methods, which can process multiple samples in parallel, saving both time and cost, play important roles in achieving this goal. Using C. elegans and human as model organisms, a HTP cloning and expression pipeline was developed for structural proteomics that required production of a large number of recombinant proteins, applying the Gateway cloning/expression technology and utilizing a stepwise automation strategy on an integrated robotic platform. This system can process up to 384 unique samples in parallel and successfully automates most aspects of gene cloning and protein expression analysis, from PCR to protein solubility profiling.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Clonagem Molecular/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
17.
J Clin Invest ; 128(10): 4297-4312, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29990310

RESUMO

Induction of TLR2 activation depends on its association with the adapter protein MyD88. We have found that TLR2 and MyD88 levels are elevated in the hippocampus and cortex of patients with Alzheimer's disease (AD) and in a 5XFAD mouse model of AD. Since there is no specific inhibitor of TLR2, to target induced TLR2 from a therapeutic angle, we engineered a peptide corresponding to the TLR2-interacting domain of MyD88 (TIDM) that binds to the BB loop of only TLR2, and not other TLRs. Interestingly, WT TIDM peptide inhibited microglial activation induced by fibrillar Aß1-42 and lipoteichoic acid, but not 1-methyl-4-phenylpyridinium, dsRNA, bacterial lipopolysaccharide, flagellin, or CpG DNA. After intranasal administration, WT TIDM peptide reached the hippocampus, reduced hippocampal glial activation, lowered Aß burden, attenuated neuronal apoptosis, and improved memory and learning in 5XFAD mice. However, WT TIDM peptide was not effective in 5XFAD mice lacking TLR2. In addition to its effects in 5XFAD mice, WT TIDM peptide also suppressed the disease process in mice with experimental allergic encephalomyelitis and collagen-induced arthritis. Therefore, selective targeting of the activated status of 1 component of the innate immune system by WT TIDM peptide may be beneficial in AD as well as other disorders in which TLR2/MyD88 signaling plays a role in disease pathogenesis.


Assuntos
Doença de Alzheimer , Hipocampo/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Peptídeos/farmacologia , Receptor 2 Toll-Like/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética
18.
BMC Biotechnol ; 7: 45, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17663785

RESUMO

BACKGROUND: Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. RESULTS: With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. CONCLUSION: The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Clonagem Molecular/métodos , Escherichia coli/fisiologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
19.
J Med Chem ; 50(11): 2612-21, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17489580

RESUMO

Tethered dimers incorporating natural alpha-amino acid end groups were synthesized, including examples in which the previously reported esterase-sensitive ester linker was replaced with more stable amide or ether linkers. These compounds remained effective both as inhibitors of NAD synthetase and as potent antibacterial agents for Gram-positive strains. Studies on nonspecific effects, including detergent properties and promiscuous inhibition, suggested little contribution to observed activities.


Assuntos
Amida Sintases/antagonistas & inibidores , Aminoácidos/síntese química , Antibacterianos/síntese química , Bactérias Gram-Positivas/efeitos dos fármacos , NAD/metabolismo , Amida Sintases/metabolismo , Amidas/química , Aminoácidos/química , Aminoácidos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/enzimologia , Detergentes/química , Dimerização , Éteres/química , Testes de Sensibilidade Microbiana , Octoxinol/química , Relação Estrutura-Atividade
20.
Nat Commun ; 8(1): 1391, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123089

RESUMO

HIV-1 replication requires Tsg101, a component of cellular endosomal sorting complex required for transport (ESCRT) machinery. Tsg101 possesses an ubiquitin (Ub) E2 variant (UEV) domain with a pocket that can bind PT/SAP motifs and another pocket that can bind Ub. The PTAP motif in the viral structural precursor polyprotein, Gag, allows the recruitment of Tsg101 and other ESCRTs to virus assembly sites where they mediate budding. It is not known how or even whether the UEV Ub binding function contributes to virus production. Here, we report that disruption of UEV Ub binding by commonly used drugs arrests assembly at an early step distinct from the late stage involving PTAP binding disruption. NMR reveals that the drugs form a covalent adduct near the Ub-binding pocket leading to the disruption of Ub, but not PTAP binding. We conclude that the Ub-binding pocket has a chaperone function involved in bud initiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/metabolismo , Fatores de Transcrição/metabolismo , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Esomeprazol/farmacologia , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Liberação de Vírus/efeitos dos fármacos , Liberação de Vírus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa