Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 54(9): 1841-8, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25711934

RESUMO

A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2'-chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semirational design of the enzyme showed that the W187H variant could increase the activity by ∼100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. On the basis of these computational results, we further predicted that the mutations W187Y and D287G might also be able to increase the substrate binding and thus improve the enzyme's catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100-fold increase in turnover rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turnover rate. Our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.


Assuntos
Carboxilesterase/metabolismo , Simulação de Dinâmica Molecular , Fenilacetatos/metabolismo , Pseudomonas putida/enzimologia , Substituição de Aminoácidos , Carboxilesterase/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenilacetatos/química , Ligação Proteica/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Pseudomonas putida/genética , Especificidade por Substrato
2.
Chembiochem ; 15(16): 2443-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25236924

RESUMO

A new member of the CYP116B subfamily-P450LaMO-was discovered in Labrenzia aggregata by genomic data mining. It was successfully overexpressed in Escherichia coli, purified, and subsequently characterized spectroscopically, and its catalytic properties were assessed. Substrate profiling of the P450LaMO revealed that it was a versatile catalyst, exhibiting hydroxylation and epoxidation activities as well as O-dealkylation and asymmetric sulfoxidation activities. Diverse compounds, including alkylbenzenes, aromatic bicyclic molecules, and terpenoids, were shown to be hydroxylated by P450LaMO. Such diverse catalytic activities are uncommon for the bacterial P450s, and the P450LaMO-mediated stereoselective hydroxylation of inactivated C-H bonds-ubiquitous and relatively unreactive in organic molecules-is particularly unusual. The self-sufficient nature of P450LaMO, coupled with its broad substrate range, highlights it as an ideal template for directed evolution towards various applications.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Rhodobacteraceae/enzimologia , Sequência de Aminoácidos , Biocatálise , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/metabolismo , Hidroxilação , Dados de Sequência Molecular , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Alinhamento de Sequência , Especificidade por Substrato
3.
Appl Environ Microbiol ; 80(23): 7348-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239898

RESUMO

A novel nonheme chloroperoxidase (RhEst1), with promiscuous esterase activity for enantioselective hydrolysis of ethyl (S)-2,2-dimethylcyclopropanecarboxylate, was identified from a shotgun library of Rhodococcus sp. strain ECU1013. RhEst1 was overexpressed in Escherichia coli BL21(DE3), purified to homogeneity, and functionally characterized. Fingerprinting analysis revealed that RhEst1 prefers para-nitrophenyl (pNP) esters of short-chain acyl groups. pNP esters with a cyclic acyl moiety, especially that with a cyclobutanyl group, were also substrates for RhEst1. The Km values for methyl 2,2-dimethylcyclopropanecarboxylate (DmCpCm) and ethyl 2,2-dimethylcyclopropane carboxylate (DmCpCe) were 0.25 and 0.43 mM, respectively. RhEst1 could serve as an efficient hydrolase for the bioproduction of optically pure (S)-2,2-dimethyl cyclopropane carboxylic acid (DmCpCa), which is an important chiral building block for cilastatin. As much as 0.5 M DmCpCe was enantioselectively hydrolyzed into (S)-DmCpCa, with a molar yield of 47.8% and an enantiomeric excess (ee) of 97.5%, indicating an extremely high enantioselectivity (E = 240) of this novel and unique biocatalyst for green manufacturing of highly valuable chiral chemicals.


Assuntos
Cloreto Peroxidase/isolamento & purificação , Cloreto Peroxidase/metabolismo , Cilastatina/metabolismo , Inibidores de Proteases/metabolismo , Rhodococcus/enzimologia , Sequência de Aminoácidos , Cloreto Peroxidase/genética , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Dados de Sequência Molecular , Filogenia , Rhodococcus/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
J Mol Graph Model ; 62: 319-324, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26556053

RESUMO

A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications.


Assuntos
Proteínas de Bactérias/química , Carboxilesterase/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Biocatálise , Carboxilesterase/genética , Domínio Catalítico , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Rhodococcus/enzimologia , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa